精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

【答案】(1);(2).

【解析】分析:由已知

(1)①若在定义域上单调递增,讨论可得②若在定义域上单调递减,讨论可得.据此可得.

(2)(1)知,.的两根分别为,设计算可得 换元讨论可得.

详解:由已知

(1)①若在定义域上单调递增,则,即(0,+∞)上恒成立,

,所以

②若在定义域上单调递减,则,即(0,+∞)上恒成立,

,所以.

因为在定义域上不单调,所以,即.

(2)(1)知,欲使(0,+∞)有极大值和极小值,必须.

,所以.

的两根分别为

的两根分别为,于是.

不妨设

上单调递增,在上单调递减,在上单调递增,

所以

所以

,于是.

,得.

因为

所以上为减函数.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和等于,设点的轨迹为

(1)求曲线的方程;

(2)过点作直线与曲线交于点,以线段为直径的圆能否过坐标原点,若能,求出直线的方程,若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且x≤0时, f(x)=-x+1

(1)求f(0),f(2);

(2)求函数f(x)的解析式;

(3)若f(a-1)<3,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形中,的中点,点在线段上,且.若将, 分别沿折起,使两点重合于点,如图2.

(1)求证: 平面;

(2)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:

(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;

(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?

优质品

非优质品

合计

合计

(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;

(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为函数的导函数.

(1)设函数的图象与轴交点为,曲线点处的切线方程是,求的值;

(2)若函数,求函数的单调区间.

查看答案和解析>>

同步练习册答案