精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

1)求证:ACSD

2)若SD⊥平面PAC,求二面角P-AC-D的大小.

【答案】1)证明见解析(230°

【解析】

1)连接于点,连接,易得,所以平面,从而得到;(2)根据得到,从而得到为二面角的平面角,再求出,得到,从而得到二面角.

1)连接于点,连接

由题意,底面为正方形,

侧棱

所以

在正方形中,

又因为,且平面平面

所以平面

又因为平面

所以.

2)连接,因为平面

所以

又因为在中,

所以.

所以

又因的中点,

所以.

所以为二面角的平面角,

又因为,在中由等面积法,

中,

所以.

故二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知(a>0)是定义在R上的偶函数,

1)求实数a的值;

2)判断并证明函数的单调性;

3)若关于的不等式的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且其中一个焦点的坐标为.

(1)求椭圆的方程;

(2)过椭圆右焦点的直线与椭圆交于两点,在轴上是否存在点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且.若对任意的,都有.

1)判断函数的单调性,并说明理由;

2)若,求实数的取值范围;.

3)若不等式对任意都恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年以来,我国国内非洲猪瘟疫情严重,引发猪肉价格上涨.因此,国家为保民生采取宏观调控对猪肉价格进行有效地控制.通过市场调查,得到猪肉价格在近四个月的市场平均价(单位:/)与时间 (单位:)的数据如下:

8

9

10

11

28.00

33.99

36.00

34.02

现有三种函数模型:,找出你认为最适合的函数模型,并估计201912月份的猪肉市场平均价为(

A.28B.25C.23D.21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求函数的最小值;

若对任意,恒有成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.

(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?

(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒 个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若在区间上同时存在函数的极值点和零点,求实数的取值范围.

2)如果对任意,有,求实数的取值范围.

查看答案和解析>>

同步练习册答案