精英家教网 > 高中数学 > 题目详情
(2013•浙江二模)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是(  )
分析:将圆C的方程整理为标准形式,找出圆心C的坐标与半径r,根据直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,得到以C为圆心,2为半径的圆与直线y=kx-2有公共点,即圆心到直线y=kx-2的距离小于等于2,利用点到直线的距离公式列出关于k的不等式求出不等式的解集即可得到k的范围.
解答:解:将圆C的方程整理为标准方程得:(x-4)2+y2=1,
∴圆心C(4,0),半径r=1,
∵直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′(x-4)2+y2=4与y=kx-2有公共点,
∵圆心(4,0)到直线y=kx-2的距离d=
|4k-2|
k2+1
≤2,
解得:0≤k≤
4
3

故选A
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,其中当d<r时,直线与圆相交;当d>r时,直线与圆相离;当d=r时,直线与圆相切(d为圆心到直线的距离,r为圆的半径).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江二模)对数函数y=logax(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)已知函数f(x)=
x+
1
x
,x>0
x3+9,x≤0
,若关于x的方程f(x2+2x)=a(a∈R)有六个不同的实根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)设m、n为空间的两条不同的直线,α、β为空间的两个不同的平面,给出下列命题:
①若m∥α,m∥β,则α∥β;
②若m⊥α,m⊥β,则α∥β;
③若m∥α,n∥α,则m∥n;
④若m⊥α,n⊥α,则m∥n.
上述命题中,所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x1,y1),B(x2,y2
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案