精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ ],求函数f(x)的单调减区间.

【答案】
(1)解:函数f(x)= cos(2x﹣ ),

∴f(θ+ )= cos[2(θ+ )﹣ ]

= cos(2θ+

= (cos2θcos ﹣sin2θsin

=cos2θ﹣sin2θ;…(2分)

;…


(2)解:由 ,(k∈Z)

得: ,(k∈Z);

又∵

所以函数f(x)的单调减区间为:


【解析】(I)利用三角恒等变换化简函数f(θ+ ),根据同角的三角函数关系,求值即可;(II)由正弦函数的图象与性质,求出f(x)在 上的单调减区间.
【考点精析】关于本题考查的两角和与差的余弦公式和正弦函数的单调性,需要了解两角和与差的余弦公式:;正弦函数的单调性:在上是增函数;在上是减函数才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数 的值域为 . (其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线f(x)= (x>0)上有一点列Pn(xn , yn)(n∈N*),过点Pn在x轴上的射影是Qn(xn , 0),且x1+x2+x3+…+xn=2n+1﹣n﹣2.(n∈N*)
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn , 求Sn
(3)在(2)条件下,求证: + +…+ <4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的单调递增区间
(Ⅱ)若sin2x+af(x+ )+1>6cos4x对任意x∈(﹣ )恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C的对边,若
(1)求角A的大小;
(2)已知 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2+bx﹣2<0的解集为{x|﹣2<x< },则ab等于(
A.﹣28
B.﹣26
C.28
D.26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标
x,y,z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标
x,y,z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的样本数据估计该批产品的一等品率.
(2)在该样品的一等品中,随机抽取2件产品, ①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三1200名学生中随机抽取40名,将他们一次数学模拟成绩绘制成频率分布直方图(如图)(满分为150分,成绩均为不低于80分整数),分为7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].
(1)求图中的实数a的值,并估计该高三学生这次成绩在120分以上的人数;
(2)在随机抽取的40名学生中,从成绩在[90,100)与[140,150]两个分数段内随机抽取两名学生,求这两名学生的成绩之差的绝对值标不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

同步练习册答案