精英家教网 > 高中数学 > 题目详情

【题目】过抛物线的焦点为F且斜率为k的直线l交曲线C两点,交圆MN两点(AM两点相邻).

(1)求证:为定值;

2)过AB两点分别作曲线C的切线,两切线交于点P,求面积之积的最小值.

【答案】(1)证明见解析

21

【解析】

1)依题意直线的方程为,代入,利用韦达定理即可得证;

(2)利用导数写出抛物线在点处的切线方程,联立两条切线方程求出点的坐标,并求出的面积的表达式,结合函数思想可求出两三角形面积之积的最小值.

解:(1)

依题意直线的方程为,代入

,则

.

为定值

(2)因为,所以

则切线PA方程为

PB方程为

②—①得 ③,

将③代入①得,所以

P到直线AB的距离

因为

所以

当且仅当时,取最小值1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点分别是棱长为2的正方体的棱的中点.如图,以为坐标原点,射线分别是轴、轴、轴的正半轴,建立空间直角坐标系.

1)求向量的数量积;

2)若点分别是线段与线段上的点,问是否存在直线平面?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:1(a>b>0)的左右焦点分别为F1F2,离心率为A为椭圆C上一点,且AF2F1F2,且|AF2|.

1)求椭圆C的方程;

2)设椭圆C的左右顶点为A1A2,过A1A2分别作x轴的垂线 l1l2,椭圆C的一条切线l:y=kx+m(k≠0)l1l2交于MN两点,试探究是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最小正周期并求出单调递增区间;

(2)在中,角A,B,C的对边分别是a,b,c,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.

(1)求出,,的值,并求出及数列的通项公式;

(2)设,求数列的前项和;

(3)设,在数列中取出()项,按照原来的顺序排列成一列,构成等比数列,若对任意的数列,均有,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁是我国国家名片之一,高铁的修建凝聚着中国人的智慧与汗水.如图所示,BEF为山脚两侧共线的三点,在山顶A处测得这三点的俯角分别为,计划沿直线BF开通穿山隧道,现已测得BCDEEF三段线段的长度分别为312.

(1)求出线段AE的长度;

(2)求出隧道CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在区间内有且只有一个实数,使得成立,则称函数在区间内具有唯一零点.

1)判断函数在区间内是否具有唯一零点,说明理由:

2)已知向量,证明在区间内具有唯一零点.

3)若函数在区间内具有唯一零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的空间几何体中,是等腰直角三角形,,四边形为直角梯形,中点.

)证明:平面

)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)已知函数的图象在公共点(x0y0)处有相同的切线,

(i)求证:处的导数等于0;

(ii)若关于x的不等式在区间上恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案