精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1,其中a>0且a≠1,
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式-1<f(x-1)<4,结果用集合或区间表示.
【答案】分析:(1)由f(x)是定义在R上的奇函数,知f(2)+f(-2)=f(2)-f(2)=0.
(2)当x<0时,-x>0,f(-x)=a-x-1,f(x)是定义在R上的奇函数,-f(x)=a-x-1,即f(x)=-a-x+1.由此能求出f(x)的解析式.
(3)不等式等价于.当a>1时,有,此时不等式的解集为(1-loga2,1+loga5).同理可得,当0<a<1时,不等式的解集为R.由此能求出关于x的不等式-1<f(x-1)<4的解集.
解答:解:(1)∵f(x)是定义在R上的奇函数,
∴f(2)+f(-2)=f(2)-f(2)=0.
(2)当x<0时,-x>0,
∴f(-x)=a-x-1,
∵f(x)是定义在R上的奇函数,
∴-f(x)=a-x-1,即f(x)=-a-x+1.

(3)不等式等价于
当a>1时,有,注意此时loga2>0,loga5>0.
可得此时不等式的解集为(1-loga2,1+loga5).
同理可得,当0<a<1时,不等式的解集为R.
综上所述,当a>1时,不等式的解集为(1-loga2,1+loga5).
当0<a<1时,不等式的解集为(-∞,+∞).
点评:本题考查函数的性质和应用,解题时要认真审题,仔细解答,注意函数的奇偶性的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案