精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为 (t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线C1上点P的极角为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

【答案】
(1)解:曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,

可得直角坐标方程:

直线l的参数方程为 (t为参数),

消去参数t可得普通方程:x+2y﹣3=0


(2)解: ,直角坐标为(2,2),

∴M到l的距离

从而最大值为


【解析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为 (t为参数),消去参数t可得普通方程.(2) ,直角坐标为(2,2), ,利用点到直线的距离公式及其三角函数的单调性可得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)左、右焦点分别为F1 , F2 , A(2,0)是椭圆的右顶点,过F2且垂直于x轴的直线交椭圆于P,Q两点,且|PQ|=3;
(1)求椭圆的方程;
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若 =0, =
①求证:直线l过定点;并求出定点坐标;
②求直线AT的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 )的最大值为 ,最小值为 .

(1)求 的值;

(2)将函数 图象向右平移 个单位后,再将图象上所有点的纵坐标扩大到原来的 倍,横坐标不变,得到函数 的图象,求方程 的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为 + =1(a>b>0),双曲线 =1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4

(1)求椭圆C的方程;
(2)设F1 , F2分别为椭圆C的左,右焦点,过F2作直线l(与x轴不重合)交于椭圆于A,B两点,线段AB的中点为E,记直线F1E的斜率为k,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1﹣an=2,a1=﹣5,则|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a>0且a≠1,函数f(x)=x2-(a+1)xalnx.

(1)当a=2时,求曲线yf(x)在(3,f(3))处切线的斜率;

(2)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为常数,e=2.71828……是自然对数的底数).
(1)当 时,求函数 的单调区间;
(2)若函数 内存在两个极值点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出s的值为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案