精英家教网 > 高中数学 > 题目详情

【题目】已知函数. 为实数,且,记由所有组成的数集为.

1)已知,求

2)对任意的恒成立,求的取值范围;

3)若,判断数集中是否存在最大的项?若存在,求出最大项;若不存在,请说明理由.

【答案】1;(2;(3)见解析

【解析】

(1)用a表示建立等式,即可。(2)结合恒成立问题,构造不等式,构造函数,计算最值,即可。(3)针对a取不同范围,分类讨论,判定最大项,即可。

1)已知

解得

2)对任意的恒成立,

函数上是单调递减的,

所以的取值范围是

3

①当时,,即

∴数集中的最大项为2

②当时,单调递减,

,当时,,∴

∴数集中的最大项为

③当时,单调递增,

恒成立

∴数集中无最大项

综上可知,当时,数集中的最大项为;当时,数集中无最大项

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)求证: .

2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

sin213°cos217°sin13°cos17°

sin215°cos215°sin15°cos15°

sin218°cos212°sin18°cos12°

sin2(18°)cos248°sin(18°)cos48°

sin2(25°)cos255°sin(25°)cos55°.

试从上述五个式子中选择一个,求出这个常数;

根据的计算结果,将该同学的发现推广为三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级举行了一次全年级的大型考试,在数学成绩优秀和非优秀的学生中,物理、化学、总分成绩也为优秀的人数如下表所示,则我们能以99%的把握认为数学成绩优秀与物理、化学、总分成绩优秀有关系吗?

物理优秀

化学优秀

总分优秀

数学优秀

228

225

267

数学非优秀

143

156

99

:该年级此次考试中数学成绩优秀的有360,非优秀的有880.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,EF分别是PAAB的中点,∠CEF=90°.则球O的体积为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种机器零件转速在符合要求的范围内使用时间随机器运转速度的变化而变化,某检测员随机收集了20个机器零件的使用时间与转速的数据,列表如下:

机器转速(转/分)

189

193

190

185

183

202

187

203

192

201

零件使用时间(月)

43

33

39

37

38

37

38

35

38

35

机器转速(转/分)

193

197

191

186

191

188

185

204

201

189

零件使用时间(月)

37

40

41

37

35

37

42

36

34

40

(Ⅰ)若“转速大于200转/分”为“高速”,“转速不大于200转/分”为“非高速”,“使用时间大于36个月”的为“长寿命”,“使用时间不大于36个月”的为“非长寿命”,请根据上表数据完成下面的列联表:

高速

非高速

合计

长寿命

非长寿命

合计

(Ⅱ)根据(Ⅰ)中的列联表,试运用独立性检验的思想方法:能否在犯错误的概率不超过0.01的前提下认为零件使用寿命的长短与转速高低之间的关系.

参考公式:,其中.

参考数据:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数,又在(01)上是增函数的是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;

(2)若f(x)在x=1处取得极值,且x[-1,2]时,f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.

(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

同步练习册答案