精英家教网 > 高中数学 > 题目详情
14.已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.则椭圆的长轴长为2+2$\sqrt{2}$.

分析 设抛物线方程为y2=2px(p>0),将M(1,2)代入方程解得p即可.由题意知椭圆的焦点为F1(-1,0),F2(1,0),可得c.对于椭圆,2a=|MF1|+|MF2|,可得结论.

解答 解:设抛物线方程为y2=2px(p>0),将M(1,2)代入方程得p=2.
∴抛物线的方程为y2=4x.
由题意知椭圆的焦点为F1(-1,0),F2(1,0).
∴c=1.
对于椭圆,2a=|MF1|+|MF2|=$\sqrt{(1+1)^{2}+{2}^{2}}$+$\sqrt{(1-1)^{2}+{2}^{2}}$=2+2$\sqrt{2}$.
故答案为:2+2$\sqrt{2}$.

点评 本题考查了抛物线及椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,一个几何体的三视图是三个全等的等腰直角三角形,且直角边长为2,则这个几何体的外接球的表面积为(  )
A.16πB.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设有算法如图所示:如果输入A=225,B=135,则输出的结果是(  )
A.90B.45C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=|cosx|(x≥0)的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则$\frac{(1+{θ}^{2})sin2θ}{θ}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的两个非零向量.
(2)若$\overrightarrow{OA}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=3$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{a}$-3$\overrightarrow{b}$,求证:A,B,C三点共线;
(2)若$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(2,1),t∈R,|$\overrightarrow{a}$+t$\overrightarrow{b}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图的程序框图表示算法的运行结果是(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(1,2),B(3,7),$\overrightarrow{a}$=(x,-1),$\overrightarrow{AB}$∥$\overrightarrow{a}$,则(  )
A.x=$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相同B.x=-$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相同
C.x=$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相反D.x=-$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相反

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,3),$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow{b}$,则向量$\overrightarrow{c}$的单位向量$\overrightarrow{{c}_{0}}$=($\frac{4}{5}$,$\frac{3}{5}$)或(-$\frac{4}{5}$,-$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆的一个必要不充分条件是(  )
A.m∈(-5,3)B.m∈(-3,5)C.m∈(-3,1)∪(1,5)D.m∈(-5,1)∪(1,3)

查看答案和解析>>

同步练习册答案