分析 设抛物线方程为y2=2px(p>0),将M(1,2)代入方程解得p即可.由题意知椭圆的焦点为F1(-1,0),F2(1,0),可得c.对于椭圆,2a=|MF1|+|MF2|,可得结论.
解答 解:设抛物线方程为y2=2px(p>0),将M(1,2)代入方程得p=2.
∴抛物线的方程为y2=4x.
由题意知椭圆的焦点为F1(-1,0),F2(1,0).
∴c=1.
对于椭圆,2a=|MF1|+|MF2|=$\sqrt{(1+1)^{2}+{2}^{2}}$+$\sqrt{(1-1)^{2}+{2}^{2}}$=2+2$\sqrt{2}$.
故答案为:2+2$\sqrt{2}$.
点评 本题考查了抛物线及椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 16π | B. | 12π | C. | 8π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x=$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相同 | B. | x=-$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相同 | ||
C. | x=$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相反 | D. | x=-$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相反 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m∈(-5,3) | B. | m∈(-3,5) | C. | m∈(-3,1)∪(1,5) | D. | m∈(-5,1)∪(1,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com