精英家教网 > 高中数学 > 题目详情
三棱柱ABC-A′B′C′的底面是边长为1cm 的正三角形,侧面是长方形,侧棱长为4cm,一个小虫从A点出发沿表面一圈到达A′点,则小虫所行的最短路程为    cm.
【答案】分析:将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.
解答:解:将正三棱柱ABC-A1B1C1沿侧棱CC1展开,
其侧面展开图如图所示,
由图中路线可得大矩形的对角线长即为所求结论.
故答案为:5
点评:本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在三棱柱ABC-A′B′C′中,侧面CBB′C′⊥底面ABC,∠B′BC=60°,
∠ACB=90°,且CB=CC′=CA.
(1)求证:平面AB′C⊥平面A′C′B;
(2)求异面直线A′B与AC′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A′B′C′中,BC=2,CC=
2

(1)求证:A′C⊥BC′;
(2)请在线段CC′上确定一点P,使直线A′P与平面A′BC所成角的正弦等于
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AB=BC=BB′=a,∠ABC=90°,点E、F分别是棱AB、BC上的动点,且AE=BF.
(I)求证:A′F⊥AB′.
(II)当三棱锥B′-BEF的体积取得最大值时,求二面角B-B′F-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,△ABC的三边长分别为AC=6、AB=8、BC=10,O′为其内心;取O′A、O′B、O′C的中点A′、B′、C′,并按虚线剪拼成一个直三棱柱ABC-A′B′C′(如图2),上下底面的内心分别为O′与O;
(Ⅰ)求直三棱柱ABC-A′B′C′的体积;
(Ⅱ)直三棱柱ABC-A′B′C′中,设线段OO'与平面AB′C交于点P,求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,斜三棱柱ABC-A′B′C′中,底面是边长为a的正三角形,侧棱长为b,侧棱AA′与底面相邻两边AB,AC都成45°角.
(Ⅰ)求此斜三棱柱的表面积.
(Ⅱ)求三棱锥B′-ABC的体积.

查看答案和解析>>

同步练习册答案