精英家教网 > 高中数学 > 题目详情

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;

(Ⅱ)求证:2AD·CD=AC·BC.

 

【答案】

(Ⅰ)详见解析;(Ⅱ)详见解析.

【解析】

试题分析:(Ⅰ)通过连接BD,通过证明与同一条直线垂直的两条直线垂直的思路进行证明线线平行;(Ⅱ)通过证明△DAC∽△ECD,

试题解析:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.

因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.                                                      5分

(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,

又∠BAD=∠DCB,则∠DAC=∠DCB.

又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.

所以,AD·CD=AC·CE,2AD·CD=AC·2CE,

因此2AD·CD=AC·BC.                                                                                           10分

考点:1.线线平行的证明;2.三角形相似的证明.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、如图所示,正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(I)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(II)求直线EF与平面ADC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,PQ为平面α、β的交线,已知二面角α-PQ-β为直二面角,A∈PQ,B∈α,C∈β,CA=CB=kAB(k∈R*),∠BAP=45°.
(1)证明:BC⊥PQ;
(2)设点C在平面α内的射影为点O,当k取何值时,O在平面ABC内的射影G恰好为△ABC的重心?
(3)当k=
6
3
时,求二面角B-AC-P的大小.

查看答案和解析>>

科目:高中数学 来源:北京模拟题 题型:解答题

如图所示,正三角形ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E-DF-C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省武汉二中高一(下)期末数学试卷(解析版) 题型:解答题

如图所示,PQ为平面α、β的交线,已知二面角α-PQ-β为直二面角,A∈PQ,B∈α,C∈β,CA=CB=kAB(k∈R*),∠BAP=45°.
(1)证明:BC⊥PQ;
(2)设点C在平面α内的射影为点O,当k取何值时,O在平面ABC内的射影G恰好为△ABC的重心?
(3)当时,求二面角B-AC-P的大小.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州市高三(上)期末数学试卷(文科)(解析版) 题型:解答题

如图所示,正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(I)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(II)求直线EF与平面ADC所成角的大小.

查看答案和解析>>

同步练习册答案