精英家教网 > 高中数学 > 题目详情
定义在(0,1)的函数f(x),对于任意x1,x2∈(0,1)(x1≠x2),恒有
f(x1)-f(x2)
x1-x2
<0
.若A、B为锐角三角形ABC的两内角,则有(  )
分析:根据锐角三角形及正弦函数的单调性可判断sinA与cosB大小关系,根据所给条件可知f(x)在(0,1)上的单调性,由单调性即可判断f(sinA)与f(cosB)的大小.
解答:解:因为A、B为锐角三角形ABC的两内角,所以A+B>
π
2
,即A>
π
2
-B,
所以sinA>sin(
π
2
-B),即1>sinA>cosB>0.
由题意可知f(x)为(0,1)上的减函数,所以f(sinA)<f(cosB),
故选B.
点评:本题考查函数的单调性、正弦函数性质,考查学生综合运用知识分析问题解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义在(0,+∞)上,测得f(x)的一组函数值如表:
x 1 2 3 4 5 6
f(x) 1.00 1.54 1.93 2.21 2.43 2.63
试在函数y=
x
,y=x,y=x2,y=2x-1,y=lnx+1中选择一个函数来描述,则这个函数应该是
y=lnx+1
y=lnx+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x-
3
4
.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在区间[0,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x-
3
4
.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在区间[0,4]上的最大值与最小值;
(3)是否存在一个数列{an},使得其前n项和Sn=4?f(n)+
7
2
n2
.若存在,求出其通项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数y=f(x)在[0,+∞)上是减函数,试比较f(
34
)与f(a2-a+1)的大小;
(2)已知函y=f(x)是定义在在(0,+∞)上的减函数,若f(a+1)<f(1-4a)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年浙江省嘉兴市高一(上)期末数学试卷(A卷)(解析版) 题型:填空题

已知函数f(x)定义在(0,+∞)上,测得f(x)的一组函数值如表:
x123456
f(x)1.001.541.932.212.432.63
试在函数,y=x,y=x2,y=2x-1,y=lnx+1中选择一个函数来描述,则这个函数应该是   

查看答案和解析>>

同步练习册答案