精英家教网 > 高中数学 > 题目详情
甲、乙两个篮球运动员互不影响地在同一位置上投球,命中率分别为
1
3
与p,且乙投球两次均为命中的概率为
16
25

(1)求乙投球的命中率p;
(2)求甲投三次,至少命中一次的概率;
(3)若甲、乙二人各投两次,求两人共命中两次的概率.
分析:(1)由题意知乙投球两次均命中的概率为p,根据乙投球两次均为命中的概率值,又有乙两次投球是相互独立的,根据相互独立事件同时发生的概率写出关于p的方程,得到结果.
(2)甲投三次至少有一次命中的对立事件是甲投三次都不命中,甲投三次都不命中是一个相互独立事件同时发生的概率,写出表示式,做出结果,根据对立事件的概率得到结果.
(3)甲乙两人各投两次,共命中两次包括甲和乙各命中一次,甲命中两次乙没有命中,甲没有命中乙命中两次,这三种情况是互斥的,根据相互独立事件同时发生的概率和互斥事件的概率公式得到结果.
解答:解:设“甲篮球运动员投球命中”为事件A
“乙篮球运动员投球命中”为事件B,则P(A)=
1
3
,??P(B)=p

(1)∵乙投球两次均命中的概率为p,
根据乙投球两次均为命中的概率
乙两次投球是相互独立的,根据相互独立事件同时发生的概率得p2=
16
25

∴P=
4
5

(2)依题意有,甲投三次至少有一次命中的对立事件是甲投三次都不命中,
P(
.
A
)•P(
.
A
)•P(
.
A
)=
2
3
×
2
3
×
2
3
=
8
27

∴甲投三次都命中的概率为1-P(
.
A
)3=
19
27

(3)甲乙两人各投两次,共命中两次的概率为
C
1
2
P(A)P(
.
A
)•
C
1
2
P(B)P(
.
B
)+P(A)P(A)P(
.
B
)P(
.
B
)+P(
.
A
)P(
.
A
)P(B)P(B)
=
1
3
×
2
3
×2×
4
5
×
1
5
+
1
3
×
1
3
×
1
5
×
1
5
+
2
3
×
2
3
×
4
5
×
4
5
=
97
225
点评:本题考查相互独立事件同时发生的概率,考查互斥事件的概率公式,是一个运算量比较大的题目,特别是第三问用到的数字比较多,容易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
1
2
与p,且乙投球2次均未命中的概率为
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
1
2
与p,且乙投球2次均未命中的概率为
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009年)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
1
2
3
4

(1)求乙投球2次都不命中的概率;
(2)若甲、乙各投球1次,两人共命中的次数记为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个篮球运动员在某赛季的得分情况如右侧的茎叶图所示,则(  )

查看答案和解析>>

同步练习册答案