精英家教网 > 高中数学 > 题目详情

设单调递增函数的定义域为,且对任意的正实数x,y有:

⑴.一个各项均为正数的数列满足:其中为数列的前n项和,求数列的通项公式;

⑵.在⑴的条件下,是否存在正数M使下列不等式:

对一切成立?若存在,求出M的取值范围;若不存在,请说明理由.

(1)(2)


解析:

⑴、对任意的正数均有

, 

是定义在上的单增函数,

时,

时,

为等差数列,

⑵、假设存在满足条件,

对一切恒成立. ……………8分

, 

单调递增,

.  

w.w.w.k.s.5.u.c.o.m

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M,都有f(x)≥M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的下界.已知函数f(x)=(x2-3x+3)•ex,其定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调递增函数;
(2)试判断m,n的大小,并说明理由;并判断函数f(x)在定义域上是否为有界函数,请说明理由;
(3)求证:对于任意的t>-2,总存在x0∈(-2,t)满足
f′(x0)
ex0
=
2
3
(t-1)2,并确定这样的x0的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x),对任意x,y∈R,有f(x+y)=f(x)•f(y),且当x>0时,恒有f(x)>1,若f(1)=2.
(1)求f(0);
(2)求证:x∈R时f(x)为单调递增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空数集.设.f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(M);
(II)若P∩M=φ,a函数f(x)是定义在R上的单调递增函数,求集合P,M
(III)判断命题“若P∪M≠R,则.f(P)∪f(M)≠R”的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x),g(x)分别是定义在(-∞,0)∪(0,+∞)上的奇函数和偶函数,当x<0时,f(x)•g(x)为单调递增函数,且g(-3)=0,则不等式f(x)•g(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函数f(x)定义为:对每个给定的实数x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)对所有实数x都成立,求a的取值范围;
(2)设t∈R,t>0,且f(0)=f(t).设函数f(x)在区间[0,t]上的单调递增区间的长度之和为d(闭区间[m,n]的长度定义为n-m),求
d
t

(3)设g(x)=x2-2bx+3.当a=2时,若对任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求实数b的取值范围.

查看答案和解析>>

同步练习册答案