精英家教网 > 高中数学 > 题目详情
已知向量
OA
=
a
OB
=
b
,且
a
b
不共线,C为线段AB上距点A较近的一个三等分点,则以
a
b
为基底,向量
OC
可表示为(  )
A、
1
3
(2
a
+
b
B、
1
3
a
+2
b
C、
1
3
(4
a
-
b
D、
1
3
(5
a
-2
b
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:用平面向量基本定理结合三角形法则用
OA
=
a
OB
=
b
表示即可.
解答: 解:∵
OC
=
OA
+
AC

=
OA
+
1
3
AB

=
OA
+
1
3
(
OB
-
OA
)

=
2
3
OA
+
1
3
OB

=
1
3
(2
a
+
b

故选:A.
点评:考查平面向量基本定理以及数乘向量,题型相当基本.所涉及知识都是平面向量的最基本知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图为某图形的正视图、侧视图及俯视图,请画出原图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点,焦点在x轴上的椭圆,离心率
6
3
且过点(
5
,0),过定点C(-1,0)的动直线与该椭圆相交于A、B两点.
(1)若线段AB中点的横坐标是-
1
2
,求直线AB的方程;
(2)设x轴上是否存在点M,使
MA
MB
为常数?若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求当
a
b
满足什么条件时,|
a
+
b
|=|
a
-
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.
(Ⅰ)证明:AE∥平面BDF;
(Ⅱ)点M为CD上的任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α是第二象限角,且sinα=
3
5
,求sin(
π
6
-2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)>0(n∈N*),f(2)=4,并且对于任意n2,n2∈N*,有f(n1+n2)=f(n1)•f(n2)成立,猜想f(n)的表达式为(  )
A、f(n)=n2
B、f(n)=2n
C、f(n)=2n+1
D、f(n)=2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y,其焦点为F,点M在抛物线C上.
(Ⅰ)当|MF|=3时,求点M的坐标;
(Ⅱ)以M为圆心且过定点A(0,t)的圆与x轴交于P、Q两点.已知当M运动时,弦长|PQ|始终为定值,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

图为某少数民族最常见的四个刺绣图案,这些图案都是小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5)的值;
(Ⅱ)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;
(Ⅲ)证明
1
f(2)-1
+
1
f(3)-1
+…+
1
f(n)-1
1
2

查看答案和解析>>

同步练习册答案