精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若曲线处的切线方程为,求实数的值;

2)若,且在区间上恒成立,求实数的取值范围;

3)若,且,讨论函数的单调性.

【答案】12.3)见解析

【解析】

1先求导,再由求解..

2)由在区间上恒成立,转化为上恒成立,令,再用导数法求解.

3)由,求导得,令

两种情况讨论.

1)由题意,得

,解得.

2)当时,在区间上恒成立,

上恒成立,

,则

,可得单调递增;

,可得单调递减;

所以,即,故.

3)当时,

时,

所以,在,∴,∴单调递增,

,∴,∴单调递减.

时,

,解得

所以,在内,,∴

单调递增;

内,,∴

单调递减.

综上, 时, 上单调递增,在单调递减.

时,∴单调递增;在∴单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线Cy=D为直线y=上的动点,过DC的两条切线,切点分别为AB.

1)证明:直线AB过定点:

2)若以E(0)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在处的切线与函数的图象在处的切线互相平行.

1)求的值;

2)若恒成立,求实数的取值范围;

3)若数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100110)[110120)[120130)[130140)[140150]分别加以统计,得到如图所示的频率分布直方图.

1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;

2)若规定分数不小于130分的学生为数学尖子生,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为数学尖子生与性别有关

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校甲、乙、丙三个兴趣小组的学生人数分别为362424.现采用分层抽样的方法从中抽取7人,进行睡眠质量的调查.

1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?

2)若抽出的7人中有3人睡眠不足,4人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.表示抽取的3人中睡眠充足的学生人数,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件求方程.

(1)已知顶点的坐标为,求外接圆的方程;

(2)若过点的直线被圆所截的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E)的焦点为F,圆C:,点为抛物线上一动点.时,的面积为.

1)求抛物线E的方程;

2)若,过点P作圆C的两条切线分别交y轴于MN两点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数为奇函数,且有极小值.

1)求实数的值;

2)求实数的取值范围;

3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求实数取值的集合;

(2)证明:

查看答案和解析>>

同步练习册答案