精英家教网 > 高中数学 > 题目详情

【题目】已知函数,当时,的取值范围是.

(1)求的值;

(2)若不等式恒成立,求实数的取值范围;

(3)若函数有3个零点,求实数的取值范围.

【答案】(1) . (2) ;(3)

【解析】

1)讨论k的取值范围,说明上的单调性,求出对应的值域,即可求出k的值;

2转换为恒成立,换元求出的最小值即可;

3)令,则,等价转换为有两个不等的实数解,且两解满足,利用根的分布,求出的取值范围.

解:(1)当时,上是增函数,,与已知不符.

时,,当且仅当时,取等号.

是减函数,在上是增函数.

时,

此时符合题意.

时,由题意知,求得,不合题意.

.

(2)可化为

.

,∴

时,取最小值0.

的取值范围是.

(3)由题意知

,则,函数有3个零点,

化为有两个不等的实数解,且两解满足

,则

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDA1B1C1D1中,EF分别为ABA1C的中点,且AA1AD

1)求直线EF与平面ABCD所成角的大小;

2)若EFAB,求二面角BA1CD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在交通工程学中,常作如下定义:交通流量(辆/小时):单位时间内通过道路上某一横断面的车辆数;车流速度(千米/小时):单位时间内车流平均行驶过的距离;车流密度(辆/千米):单位长度道路上某一瞬间所存在的车辆数. 一般的,满足一个线性关系,即(其中是正数),则以下说法正确的是

A. 随着车流密度增大,车流速度增大

B. 随着车流密度增大,交通流量增大

C. 随着车流密度增大,交通流量先减小,后增大

D. 随着车流密度增大,交通流量先增大,后减小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查宜昌一中高二年级男生的身高状况,现从宜昌一中高二年级中随机抽取100名男生作为样本,下图是样本的身高频率分布直方图(身高单位:cm).

1)用样本频率估计高二男生身高在180cm及以上概率,并根据图中数据估计宜昌一中高二男生的平均身高;

2)在该样本中,求身高在180cm及以上的同学人数,利用分层抽样的方法再从身高在180cm及以上的两组同学(180~185185~190)中选出3名同学,应该如何选取;

3)在该样本中,从身高在180cm及以上的同学中随机挑选3人,这3人的身高都在185cm及以上的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于 两点,直线 分别与轴交于点

(Ⅰ)求椭圆的方程;

(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为常数.

时,设函数,判断函数上是增函数还是减函数,并说明理由;

设函数,若函数有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是梯形,为边的中点.

1)求证:平面

2)求证:平面平面

3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案