精英家教网 > 高中数学 > 题目详情
已知向量a=(cos
3x
2
,sin
3x
2
),b=(cos
x
2
,-sin
x
2
),c=(
3
,-1),其中x∈R

(1)当a•b=
1
2
时,求x值的集合;
(2)设函数f(x)=(a-c)2,①求f(x)的最小正周期;②写出函数f(x)的单调增区间;③写出函数f(x)的图象的对称轴方程.
分析:(1)由数量积公式将向量方程这形为三角方程,再由三角恒等变换公式化简,解出x值的集合;
(2)由数量积公式求出f(x)的三角表达式,利用三角恒等变换进行化简,将其变为y=Asin(ωx+φ)的形式,再由正弦函数的性质求出函数的周期、单调区间、对称轴方程.
解答:解:(1)∵
a
b
=cos
3x
2
•cos
x
2
-sin
3x
2
sin
x
2
=cos2x=
1
2

2x=2kπ±
π
3
,x=kπ±
π
6
(k∈z)
x的集合是{x|x=kπ±
π
6
(k∈z)}
…(4分)
(2)∵
a
-
c
=(cos
3x
2
-
3
,sin
3x
2
+1)

f(x)=(cos
3x
2
-
3
)2+(sin
3x
2
+1)2
=2+3-2
3
cos
3x
2
+2sin
3x
2
=5+4(
1
2
sin
3x
2
-
3
2
cos
3x
2
)
=5+4sin(
3x
2
-
π
3
)
…(8分)
①最小正周期T=
3
2
=
4
3
π
…(9分)
2kπ-
π
2
3
2
x-
π
3
≤2kπ+
π
2

2kπ-
π
6
3
2
x≤2kπ+
6
4
3
kπ-
π
9
≤x≤
4
3
kπ+
5
9
π(k∈z)

∴增区间是[
4
3
kπ-
π
9
4
3
kπ+
9
](k∈z)
…(12分)
③对称轴方程是x=
2
3
kπ+
9
(k∈z)
…(14分)
点评:本题考查三角函数的恒等变换的应用,解题的关键是掌握三角恒等变换公式及三角函数的性质灵活运用性质求周期、单调区间、对称轴等,本题是三角与向量结合的综合题,知识性强,考查全面,是三角函数在高考试卷上出现的主要形式,题后应好好总结此题在解法上的逻辑脉络及解题顺序.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(-cosα,1+sinα)
b
=(2sin2
α
2
,sinα)

(Ⅰ)若|
a
+
b
|=
3
,求sin2α的值;
(Ⅱ)设
c
=(cosα,2)
,求(
a
+
c
)•
b
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx-sinωx,sinωx)
b
=(-cosωx-sinωx,2
3
cosωx)
,其中ω>0,且函数f(x)=
a
b
(λ为常数)的最小正周期为π.
(Ⅰ)求函数y=f(x)的图象的对称轴;
(Ⅱ)若函数y=f(x)的图象经过点(
π
4
,0)
,求函数y=f(x)在区间[0,
12
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
θ
2
,sin
θ
2
)
b
=(2,1)
,且
a
b

(1)求tanθ的值;
(2 )求
cos2θ
2
cos(
π
4
+θ)•sinθ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(ωx-
π
6
),  sin(ωx-
π
4
)),  
b
=(sin(
2
3
π-ωx), sin(ωx+
π
4
))
(其中ω>0).若函数f(x)=2
a
b
-1
的图象相邻对称轴间距离为
π
2

(Ⅰ)求ω的值;
(Ⅱ)求f(x)在[-
π
12
,  
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),
b=
(cos2θ-1,sin2θ),
c
=(cos2θ,sin2θ-
3
)
.其中θ≠kπ,k∈Z.
(1)求证:
a
b

(2)设f(θ)=
a
c
,且θ∈(0,π),求f(θ)
的值域.

查看答案和解析>>

同步练习册答案