精英家教网 > 高中数学 > 题目详情
精英家教网设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点为(0,
3
),F1,F2分别是椭圆的左、右焦点,离心率e=
1
2
,过椭圆右焦点的直线l与椭圆C交于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线l,使得以线段MN为直径的圆过原点,若存在,求出直线l的方程;若不存在,说明理由.
(Ⅲ)若AB是椭圆C经过原点O的弦,MN∥AB,求证:
|AB|2
|MN|
为定值.
分析:(Ⅰ)椭圆的顶点为(0,
3
),即b=
3
,e=
c
a
=
1
2
,所以a=2,由此能求出椭圆的标准方程.
(Ⅱ)设l的方程为x=my+1,M(x1,y1),N(x2,y2),由
x=my+1
3x2+4y2-12=0
,得(3m2+4)y2+6my-9=0,再由韦达定理和x1x2+y1y2=0,得-12m2-5=0这不可能,所以不存在存在直线l,使得以线段MN为直径的圆过原点.
(Ⅲ)设M(x1,y1),N(x2,y2),A(x3,y3),B(x4,y4),由|MN|=
1+k2
|x1-x2|=
(1+k2)[(x1+x2)2-4x1x2]
=
12(k2+1)
3+4k2
.知
|AB|2
|MN|
=4为定值.
解答:解:(Ⅰ)椭圆的顶点为(0,
3
),即b=
3
,e=
c
a
=
1
2
,所以a=2,
∴椭圆的标准方程为
x2
4
+
y2
3
=1
(Ⅱ)不存在.设l的方程为x=my+1,M(x1,y1),N(x2,y2),则由
x=my+1
3x2+4y2-12=0

得(3m2+4)y2+6my-9=0所以
y1+y2=
-6m
3m2+4
y1y2=
-9
3m2+4

因为x1x2+y1y2=0?(m2+1)y1y2+m(y1+y2)+1=0
(m2+1)
-9
3m2+4
+m
-6m
3m2+4
+1=0
,-12m2-5=0这不可能,所以不存在
(Ⅲ)设M(x1,y1),N(x2,y2),A(x3,y3),B(x4,y4),
由(2)可得:|MN|=
1+k2
|x1-x2|=
(1+k2)[(x1+x2)2-4x1x2]
=
12(k2+1)
3+4k2

x2
4
+
y2
3
=1
y=kx
消去y,并整理得x2=
12
3+4k2

|AB|=
1+k2
|x3-x4|=4
3(1+k2)
3+4k2
,∴
|AB|2
|MN|
=4为定值.
点评:本题考查直线与圆锥曲线的位置关系,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
OP
OQ
=-
5
3
求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)若过A.Q.F2三点的圆恰好与直线l:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1
|F2M|
+
1
|F2N|
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦点分别为F1,F2,若P 是椭圆上的一点,|
PF1
|+|
PF2
|=4
,离心率e=
3
2

(1)求椭圆C的方程;
(2)若P 是第一象限内该椭圆上的一点,
PF1
PF2
=-
5
4
,求点P的坐标;
(3)设过定点P(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1,F2,离心率为e=
2
2
,以F1为圆心,|F1F2|为半径的圆与直线x-
3
y-3=0
相切.
(I)求椭圆C的方程;
(II)直线y=x交椭圆C于A、B两点,D为椭圆上异于A、B的点,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案