£¨2013•Ã¯Ãû¶þÄ££©ÊýÁÐ{an}µÄÇ°nÏîºÍSn£¬a1=t£¬µã£¨Sn£¬an+1£©ÔÚÖ±Ïßy=2x+1ÉÏ£¬£¨n=1£¬2£¬¡­£©
£¨1£©ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇóʵÊýtµÄÖµ£»
£¨2£©Éèbn=£¨n+1£©•log3an+1£¬ÊýÁÐ{
1
bn
}Ç°nÏîºÍTn£®ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷²»µÈʽTn£¼1£»
£¨3£©Éè¸÷Ïî¾ù²»Îª0µÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãci•ci+1£¼0µÄÕûÊýiµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬Áîcn=
nan-4
nan
£¨n=1£¬2£¬¡­£©£¬ÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±
·ÖÎö£º£¨1£©ÀûÓõ㣨Sn£¬an+1£©ÔÚÖ±Ïßy=2x+1ÉÏ£¬¿ÉµÃan+1=2Sn+1£¬ÔÙдһʽ£¬Á½Ê½Ïà¼õ£¬ÀûÓÃa1=t£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬´Ó¶ø¿ÉÇótµÄÖµ£»
£¨2£©È·¶¨ÊýÁÐ{
1
bn
}µÄͨÏÀûÓÃÁÑÏî·¨ÇóÊýÁеĺͣ¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©ÏÈÈ·¶¨c1c2=-1£¬ÔÙÖ¤Ã÷ÊýÁÐ{cn}ÊǵÝÔöÊýÁУ¬¼´¿ÉÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£®
½â´ð£º£¨1£©½â£ºÒòΪµã£¨Sn£¬an+1£©ÔÚÖ±Ïßy=2x+1ÉÏ£¬ËùÒÔan+1=2Sn+1
ËùÒÔn¡Ý2ʱ£¬an=2Sn-1+1
Á½Ê½Ïà¼õ¿ÉµÃan+1-an=2an
ËùÒÔan+1=3an£¨n¡Ý2£©
¡ßa1=t£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
¡à
a2
a1
=
2t+1
t
=3£¬¡àt=1£»
£¨2£©Ö¤Ã÷£ºÓÉ£¨1£©µÃbn=£¨n+1£©•log3an+1=n£¨n+1£©
¡à
1
bn
=
1
n(n+1)
=
1
n
-
1
n+1

¡àTn=
1
b1
+
1
b2
+¡­+
1
bn
=1-
1
2
+
1
2
-
1
3
+¡­+
1
n
-
1
n+1
=1-
1
n+1
£¼1£»
£¨3£©½â£ºÓÉ£¨1£©Öª£¬an=3n-1
¡àcn=
nan-4
nan
=1-
4
n•3n-1

¡àc1=1-4=-3£¬c2=1-
4
2¡Á3
=
1
3

¡àc1c2=-1
¡ßcn+1-cn=1-
4
(n+1)•3n
-1+
4
n•3n-1
=
4(2n+3)
n(n+1)•3n
£¾0
¡àÊýÁÐ{cn}ÊǵÝÔöÊýÁÐ
¡ßc2=1-
4
2¡Á3
=
1
3
£¾0£¬¡àn¡Ý2ʱ£¬cn£¾0
¡àÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éж¨Ò壬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬È·¶¨ÊýÁеÄͨÏîÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ã¯Ãû¶þÄ££©º¯Êýf£¨x£©=
x-2
+
1
x-3
µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ã¯Ãû¶þÄ££©ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼ£¬ÆäÖÐÕýÊÓͼÖаëÔ²°ë¾¶Îª1£¬Ôò¸Ã¼¸ºÎÌåÌå»ýΪ £¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ã¯Ãû¶þÄ££©ÒÑÖªx£¬y¡ÊR£¬iΪÐéÊýµ¥Î»£¬ÇÒxi-y=-1+i£¬Ôò£¨1+i£©x+yµÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ã¯Ãû¶þÄ££©ÈôÏòÁ¿
a
£¬
b
£¬
c
Âú×ã
a
¡Î
b
£¬ÇÒ
b
c
=0£¬Ôò(2
a
+
b
)
c
=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ã¯Ãû¶þÄ££©ÒÑÖªÍÖÔ²
x2
16
+
y2
9
=1¼°ÒÔÏÂ3¸öº¯Êý£º¢Ùf£¨x£©=x£»¢Úf£¨x£©=sinx£»¢Ûf£¨x£©=cosx£»ÆäÖк¯ÊýͼÏóÄܵȷָÃÍÖÔ²Ãæ»ýµÄº¯Êý¸öÊýÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸