精英家教网 > 高中数学 > 题目详情
设a,b,x,y∈R且满足a2+b2=m,x2+y2=n,求ax+by的最大值为
 
分析:先根据柯西不等式可知(a2+b2)(x2+y2)≥(ax+by)2,进而的求得(ax+by)2的最大值,进而求得ax+by的最大值.
解答:解:由柯西不等式可知
(a2+b2)(x2+y2)≥(ax+by)2,即
1≥(ax+by)2
∴ax+by≤
mn

故答案为:
mn
点评:本题主要考查了基本不等式在最值问题中的应用.解题的关键是利用了柯西不等式,达到解决问题的目的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,x,y∈R+,且x2+y2=r2(r>0),求证:
a2x2+b2y2
+
a2y2+b2x2
≥r(a+b).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,x,y∈R+,且a2+b2=1,x2+y2=1,试证:ax+by≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,x,y∈R+
3x-y-6≤0
x-y+2≥0
,若z=ax+by的最大值为2,则
2
α
+
3
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a,b,x,y∈R+,且a2+b2=1,x2+y2=1,试证:ax+by≤1.

查看答案和解析>>

同步练习册答案