精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,正确的序号是 . ①y=﹣2cos( π﹣2x)是奇函数;
②若α,β是第一象限角,且α>β,则sinα>sinβ;
③x=﹣ 是函数y=3sin(2x﹣ )的一条对称轴;
④函数y=sin( ﹣2x)的单调减区间是[kπ﹣ ,kπ+ ](k∈Z)

【答案】①③④
【解析】解:对于①,y=﹣2cos( π﹣2x)=2sin2x,是定义域R上的奇函数,命题正确; 对于②,α,β是第一象限角,且α=390°>β=30°,则sinα=sinβ,原命题错误;
对于③,x=﹣ 时,函数y=3sin(2x﹣ )=3sin(2×(﹣ )﹣ )=3取得最大值,
∴x=﹣ 是函数y=3sin(2x﹣ )的一条对称轴,命题正确;
对于④,函数y=sin( ﹣2x)=﹣sin(2x﹣ ),
令﹣ +2kπ≤2x﹣ +2kπ,k∈Z,
解得﹣ +kπ≤x≤ +kπ,k∈Z,
∴y=sin( ﹣2x)的单调减区间是[kπ﹣ ,kπ+ ](k∈Z),命题正确;
综上,正确的命题序号是①③④.
所以答案是:①③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a﹣
(1)若x∈[ ,+∞),①判断函数g(x)=f(x)﹣2x的单调性并加以证明;②如果f(x)≤2x恒成立,求a的取值范围;
(2)若总存在m,n使得当x∈[m,n]时,恰有f(x)∈[2m,2n],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有三个不同的零点 (其中),则的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处取得极值.

1)求函数的解析式;

2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若点Q的坐标是 ,求 的值;
(Ⅱ)设函数 ,求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.
(1)求出y关于x的函数f(x)的解析式;
(2)求y的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面为菱形,且 是边长为的正三角形,且平面平面,点的中点.

(1)证明: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosα= ,cos(α﹣β)= ,且0<β<α< , (Ⅰ)求tan2α的值;
(Ⅱ)求β.

查看答案和解析>>

同步练习册答案