精英家教网 > 高中数学 > 题目详情
(1)计算log3
427
3
+lg25+lg4+7 log72+log23•log94=
 

(2)设集合A={x|
1
32
≤2-x≤4},B={x|m-1<x<2m+1},若A∩B=B,求m的取值.
考点:对数的运算性质,交集及其运算
专题:函数的性质及应用,集合
分析:(1)直接对对数的关系式进行恒等变换,利用公式求出结果.
(2)首先求出集合A中元素的取值范围,利用集合A和B的关系,利用分类讨论法求出结果.
解答: 解:(1)log3
427
3
+lg25+lg4
+7log72+log23•log94
=log33-
1
4
+lg100+2+
lg3
lg2
lg4
lg9

=-
1
4
+4+1

=
19
4

(2)集合A={x|
1
32
≤2-x≤4},
所以:A={x|-2≤x≤5}
B={x|m-1<x<2m+1},
若A∩B=B,
所以:B⊆A
①B=Φ,即m-1≥2m+1
解得:m≤-2
②B≠Φ,即
m-1≥-2
2m+1≤5
2m+1>m-1

解得:-1≤m≤2
综上所述:m的取值范围为:m≤-2或-1≤m≤2
点评:本题考查的知识要点:对数的运算,利用集合间的关系求参数的取值范围.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
px2+2
3x+q
是奇函数,且f(2)=
5
3

(1)求实数p,q的值;
(2)证明函数f(x)在(-∞,-1)上是单调增函数,并判断f(x)在(1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,BB1⊥平面A1B1C1,A1B1=A1C1,点D、F分别是棱BC、CC1上的中点,点E是CC1上的动点
(Ⅰ)证明:A1F∥平面ADE;
(Ⅱ)证明:A1F⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

两个变量的数据如表,
x1357
y45m8
已知回归方程为y=
7
5
x+
2
5
,则表中缺失的数据m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

试比较a3+8a与5a2+4的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,-2a<b<-a,a+b+c=0,求
b2-3ac
a2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(1,7)
OB
=(5,1)(O为坐标原点),设M是函数y=
1
2
x所在直线上的一点,那么
MA
MB
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=
3
2
an-3
(1)数列{an}的通项公式;
(2)若Sn>can(c为常数)对任意n∈N* 都成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:(2x-1)(x+1)<0.

查看答案和解析>>

同步练习册答案