精英家教网 > 高中数学 > 题目详情
11.抛物线y2=2px(p<0)上横坐标为-6的点到焦点的距离是10,则焦点到准线的距离是8.

分析 根据抛物线的定义可知该点到准线的距离为10,进而利用抛物线方程求得其准线方程,利用点到直线的距离求得p,即为焦点到准线的距离.

解答 解:∵横坐标为-6的点到焦点的距离是10,
∴该点到准线的距离为10,
抛物线的准线方程为x=-$\frac{p}{2}$,
∴-$\frac{p}{2}$+6=10,求得p=-8,
∴焦点到准线的距离是8.
故答案为:8.

点评 本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在直角梯形ABCD中,∠BAD=∠ADC=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=2a.
(1)求证:平面SAB⊥平面SAD;
(2)设SB的中点为M,当$\frac{CD}{AB}$为何值时,能使DM⊥MC?请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$的模分别为1,2,3.则|$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正项等比数列{an}的前n项和为Sn,且S2=6,S4=30,n∈N*,数列{bn}满足bn•bn+1=an,b1=1
(I)求an,bn
(Ⅱ)求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,E的短轴的一个端点与两个焦点构成的三角形的面积为$\sqrt{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l与圆5x2+5y2-4=0相切,l与椭圆E相交于A、B两点,求证:以AB为直径的圆经过坐标原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2cosA-1)sinB+2cosA=1
(1)求A的大小;
(2)若6b2=a2+3c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{bn}为单调递增的等差数列,b3+b8=26,b5b6=165,设数列{an}满足2a1+22a2+23a3+…+2nan=2${\;}^{{b}_{n}}$
(1)求数列{bn}的通项;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点与抛物线y2=20x的焦点重合,且一条渐近线方程为4x+3y=0.
(1)求双曲线的标准方程;
(2)若双曲线上有一点P使得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0(F1,F2为双曲线的左,右焦点),求点P的纵坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点A(-2,3)和B(1,15)的直线方程是4x-y+11=0.

查看答案和解析>>

同步练习册答案