精英家教网 > 高中数学 > 题目详情

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

   记“函数为R上的偶函数”为事件A,求事件A的概率;

 

【答案】

设该学生选修甲、乙、丙的概率分别为x、y、z

       依题意得            

(I)                    若函数为R上的偶函数,则=0     

       当=0时,表示该学生选修三门功课或三门功课都没选.

      

       =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24

       ∴事件A的概率为0.24 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数f(x)=x2+ξ•x为R上的偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门课的概率是0.88,用表示该学生选修的课程门数和没有  选修的课程门数的乘积.

(1)记“函数f(x)=x2+·x为R上的偶函数”为事件A,求事件A的概率;

(2)求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学理卷 题型:解答题

(本小题满分14分)

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.

   (Ⅰ)求学生小张选修甲的概率;

(Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率;

                (Ⅲ)求的分布列和数学期望。                                    

      

查看答案和解析>>

同步练习册答案