分析 由题意可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).可得$\left\{\begin{array}{l}{c=3}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{2}×2a×2b=40}\end{array}\right.$,解出即可得出.
解答 解:由题意可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
∴$\left\{\begin{array}{l}{c=3}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{2}×2a×2b=40}\end{array}\right.$,解得c=3,a=5,b=4.
∴该椭圆的标准方程为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.
故答案为:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.
点评 本题考查了椭圆的标准方程及其性质、四边形形的面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$ | B. | $\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=0 | C. | $\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{CB}$ | D. | $\overrightarrow{AB}$=-$\overrightarrow{BA}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com