精英家教网 > 高中数学 > 题目详情

在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足2sin(A+B)-=0,求角C的度数,边c的长度及△ABC的面积. (本题满分12分)

解:由2sin(A+B)-=0,得sin(A+B)=, ∵△ABC为锐角三角形
∴A+B=120°,  C=60°.………………………………………………………………(4分)
又∵a、b是方程x2-2x+2=0的两根,∴a+b=2,a·b="2," ……………….(6分)
∴c2=a2+b2-2a·bcosC=(a+b)2-3ab=12-6="6,  " ∴c=, …………….…….(10分)
SABC=absinC=×2×= .                     …………….…….(12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分)在△ABC中,已知,B=45°, 求A、C及c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)
16. (本小题满分12分)
已知向量,定义函数
(Ⅰ)求函数最小正周期;
(Ⅱ)在△ABC中,角A为锐角,且,求边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,且
(1)求角的大小;
(2)若,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是等边三角形,三点共线,

(Ⅰ)求的值;
(Ⅱ)求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三、解答题(本大题有5道小题,各小题12分,共60分)
17.在中,分别是角的对边,向量,且 .
(1)求角的大小;
(2)设,且的最小正周期为,求
区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
在△ABC中,abc分别为内角ABC的对边,且b2+c2-a2=bc
(Ⅰ)求角A的大小;
(Ⅱ)设函数,当取最大值时,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
已知
(Ⅰ)求角A的大小
(Ⅱ)若BC=3,求周长的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


查看答案和解析>>

同步练习册答案