精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当,求函数的图象在处的切线方程;

(2)若函数上单调递增,求实数的取值范围;

(3)已知 均为正实数,且,求证 .

【答案】(1) (2) (3)见解析

【解析】试题分析:1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;

(2)先确定﹣1a0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)0在(0,1)上恒成立,构造=(x+1)ln(x+1)﹣x,证明h(x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;

(3)由(2)知,当a=﹣1时, 在(0,1)上单调递增,证明 ,即 从而可得结论.

试题解析:

(1)当时,

∴函数的图象在时的切线方程为.

(2)∵函数上单调递增,∴上无解,

时, 上无解满足,

时,只需,∴

∵函数上单调递增,∴上恒成立,

上恒成立.

,∴,则上单调递增,

上的值域为.

上恒成立,则

综合①②得实数的取值范围为.

(3)由(2)知,当时, 上单调递增,

于是当时,

时,

,即

同理有

三式相加得 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某海产品经销商调查发现,该海产品每售出吨可获利万元,每积压吨则亏损万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.

(1)请补齐上的频率分布直方图,并依据该图估计年需求量的平均数;

(2)今年该经销商欲进货吨,以(单位:吨, )表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示为的函数解析式;并求今年的年利润不少于万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于任意的,总存在,使得成立,则实数的取值范围是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图象在点(00)处有相同的切线.

Ⅰ)求a的值;

Ⅱ)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的一点.

(Ⅰ)若点为棱的中点,证明:

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若,求的单调区间;

(2)当时,记的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数R上的奇函数,求实数a的值;

2)若对于任意,恒有,求实数a的取值范围;

3)若,函数在区间[02]上的最大值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李冶(1192-1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注: 平方步为亩,圆周率按近似计算)

A.步、B.步、C.步、D.步、

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和菱形所在的平面相互垂直,的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案