精英家教网 > 高中数学 > 题目详情
在△ABC中,已知内角A=
π
3
,边BC=2
3
.设内角B=x,面积为y.
(1)若x=
π
4
,求边AC的长;
(2)求y的最大值.
考点:正弦定理
专题:解三角形
分析:(1)由条件利用正弦定理可得
AC
sinB
=
BC
sinA
,由此求得AC的值.
(2)由三角形内家和公式可得0<B<
3
,由正弦定理可得AC=4sinx,求得y=2
3
sin(2x-
π
6
)+
3
.再由-
π
6
<2x-
π
6
6
,利用正弦函数的定义域和值域求得y的最大值.
解答: 解:(1)△ABC中,已知内角A=
π
3
,边BC=2
3
,内角B=x,
故由正弦定理可得
AC
sinB
=
BC
sinA
,即
AC
sin
π
4
=
2
3
sin
π
3
,解得AC=2
2

(2)由三角形内家和公式可得0<B<
3
,由正弦定理可得AC=4sinx,
∴y=
1
2
•AC•BC•sinC=4
3
sinx•sin(
3
-x)=4
3
sinx(
3
2
cosx+
1
2
sinx)
6sinxcosx+2
3
sin2x=2
3
sin(2x-
π
6
)+
3

再由-
π
6
<2x-
π
6
6
,可得当2x-
π
6
=
π
2
时,y取得最大值为2
3
+
3
=3
3
点评:本题主要考查正弦定理,两角和差的正弦公式,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(4)=f(-2)=1,且y=f′(x)的图象如图所示,则不等式f(x)<1的解集是(  )
A、(-2,0)
B、(0,4)
C、(-2,4)
D、(-∞,-2)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50名学生在一次百米测试中,成绩(单位:秒)全部介于13与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.若从第一、第五组中随机取出两个成绩,求这两个成绩一个在第一组,一个在第五组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

菲特台风重创宁波,志愿者纷纷前往灾区救援.现从四男三女共7名志愿者中任选2名(每名志愿者被选中的机会相等),则2名都是女志愿者的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线顶点在原点,焦点在x轴上.又知此抛物线上一点A(1,m)到焦点的距离为3.
(Ⅰ)求此抛物线的方程;
(Ⅱ)若此抛物线方程与直线y=kx-2相交于不同的两点A、B,且AB中点横坐标为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
(1)若点A,B,C不能构成三角形,求实数m满足的条件;
(2)若△ABC为直角三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为S,且|
BC
|2=
CA
CB
+2S.
(1)求B的大小;
(2)若S=
1
2
,且|
BC
-
BA
|=1,试求△ABC最长边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,右焦点到直线l:x-y+4=0的距离为
5
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过直线l上的动点P作椭圆C的切线PM、PN,切点分别为M、N,连结MN.
(1)证明:直线MN恒过定点Q;
(2)证明:当MN∥l时,定点Q平分线段MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品;乙厂执行标准B生产该产品,假定甲、乙两厂的产品都符合相应的执行标准.
(Ⅰ)已知甲厂产品的等级系数X1的概率分布列如表所示:
X1 5 6 7 8
P 0.4 a b 0.1
且X1的数学期望EX1=6,求a,b的值;
(Ⅱ)为分析乙厂产品,从该厂生产的产品中随机抽取10件,相应的等级系数组成一个样本,数据如下:
3   5   4   6   8   5   5   6   3   4,从这10件产品中随机抽取两件(不放回抽样),求这两件产品中符合标准A的产品数ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案