精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+1,x≥2}\\{x+1,x<2}\end{array}\right.$,设计一个算法,求函数的任一函数值.

分析 因为函数f(x)是分段函数,可设计一个选择语句,求出函数的任一函数值.

解答 解:算法如下:
S1  输入a;
S2  若a≥2,则执行S3,若a<2,则执行S4;
S3  输出a2-a+1;
S4  输出a+1.

点评 本题考查了设计算法语句,求分段函数值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设实数x>1,则$\frac{{x}^{2}-2x+2}{2x-2}$的最小值为(  )
A.2B.3C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用辗转相除法或者更相减损术求二个数324,135的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=cos(ωx+$\frac{π}{3}$)+$\sqrt{3}$sinωx+1(ω>0),相邻两对称轴距离为$\frac{π}{2}$.
(I)求ω的值和最小正周期;
(Ⅱ)求f(x)在区间(-$\frac{π}{12}$,$\frac{π}{2}$)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正方体ABCD-A1B1C1D1的棱长为2,P是BC的中点,点Q是棱CC1上的动点.
(1)点Q在何位置时,直线D1Q,DC,AP交于一点,并说明理由;
(2)求三棱锥B1-DBQ的体积;
(3)若点Q是棱CC1的中点时,记过点A,P,Q三点的平面截正方体所得截面为S,求截面S的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列式子:13=(1×1)2,13+23+33=(2×3)2,l3+23+33+43+53=(3×5)2,l3+23+33+43+53+63+73=(4×7)2,…由归纳思想,第n个式子为l3+23+33+…+(2n-1)3=[n(2n-1)]2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设曲线y=2016xn+1(n∈N*)在点(1,2016)处的切线与x轴交点的横坐标为xn,令an=log2016xn,则a1+a2+…+a2015的值为(  )
A.2016B.2015C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,BC=2AC,cosC=$\frac{3}{5}$,D是AB上的点,∠BCD=α,S△ACD:S△BCD=1:2.
(1)求sinα值;
(2)若BC=6,求CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点与它的左、右两个焦点F1,F2的距离之和为2$\sqrt{2}$,且它的离心率与双曲线x2-y2=2的离心率互为倒数.
(1)求椭圆的方程;
(2)如图,点A为椭圆上一动点(非长轴端点),AF1的延长线与椭圆交于点B,AO的延长线与椭圆交于点C.
①当直线AB的斜率存在时,求证:直线AB与BC的斜率之积为定值;
②求△ABC面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

同步练习册答案