精英家教网 > 高中数学 > 题目详情
已知{an}是递增等比数列,a2=2,a4-a3=4,则此数列的公比q=   
【答案】分析:由已知{an}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4-a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.
解答:解:∵{an}是递增等比数列,
且a2=2,则公比q>1
又∵a4-a3=a2(q2-q)=2(q2-q)=4
即q2-q-2=0
解得q=2,或q=-1(舍去)
故此数列的公比q=2
故答案为:2
点评:本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4-a3=4,构造出一个关于公比q的方程,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,
(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,
(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省汉中市宁强县天津高级中学高三(上)第三次月考数学试卷(文科)(解析版) 题型:解答题

设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,
(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省遵义市湄潭中学高三(上)第五次月考数学试卷(文科)(解析版) 题型:解答题

设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,
(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案