精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2(a-1)x+2,其中a∈R,a<0.
(1)求证:函数f(x)在区间(-∞,1)上是减函数;
(2)若函数f(x)在区间[1,5]上的最小值为f(5),求实数a的取值范围.
分析:(1)在(-∞,1)上任取x1,x2,且x1<x2,利用定义法得到f(x1)-f(x2)>0,故函数f(x)在区间(-∞,1)上是减函数.
(2)函数f(x)的对称轴是x=1-a,由f(x)在区间[1,5]上的最小值是f(5),得a≤-4,由此能求出a的取值范围.
解答:(1)证明:在(-∞,1)上任取x1,x2,且x1<x2
f(x1) -f(x2) =[x1 2+2(a-1) x1+2]-[x22+2(a-1)x2+2]
=(x1-x2)[x1+x2+2(a-1)],
∵a<0,
∴x1<x2<1<1-a,
∴x1-x2<0,x1+x2+2(a-1)<0,
∴f(x1)-f(x2)>0,
故函数f(x)在区间(-∞,1)上是减函数.
(2)解:函数f(x)的对称轴是x=1-a,
∵f(x)在区间[1,5]上的最小值是f(5),
∴1-a≥5,得a≤-4,
∵a<0,
∴a的取值范围是a∈(-∞,-4].
点评:本题考查二次函数的性质和应用,解题时要认真审题,注意定义法在证明函数单调性上的灵活运用和抛物线对称轴及二次函数最小值的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案