精英家教网 > 高中数学 > 题目详情

已知g(x)=x(2-x)(0≤x<1).g(1)=0,若函数y=f(x),(x∈R)是以2为周期的奇函数,且在[0,1]上f(x)=g(x),画出y=f(x)(-2≤x≤2)的图像并求其表达式.

答案:
解析:

先画出y=g(x)的图像,再根据y=f(x)是奇函数画出f(x)在(-1,0)上的图像,再把f(x)在[-1,1]上的图像向右(左)平移2个单位即得.图像如图所示.f(x)的表达式如下:

f(x)=


练习册系列答案
相关习题

科目:高中数学 来源: 题型:013

已知f(x)x1,若f(x1)的图象关于直线x2对称图象对应的函数为g(x),则g(x)(    )

A6x            Bx6               Cx2            D.-x2

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知g(x)=x(2-x)(0≤x<1),g(1)=0.若函数y=f(x)(x∈R)是以2为周期的奇函数,且在[0,1]上f(x)=g(x),画出y=f(x)(-2≤x≤2)的图象并求出其表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)=x+1,若f(x+1)的图象关于直线x=2对称图象对应的函数为g(x),则g(x)为( )


  1. A.
    6-x
  2. B.
    x-6
  3. C.
    x-2
  4. D.
    -x-2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

同步练习册答案