精英家教网 > 高中数学 > 题目详情

【题目】某中学为调查高三学生英语听力水平的情况,随机抽取了高三年级的80名学生进行测试,根据测试结果绘制了英语听力成绩(满分为30分)的频率分布直方图,将成绩不低于27分的定为优秀

1)根据已知条件完成下面的列联表,并据此资料判断是否有90%的把握认为英语听力成绩是否优秀与性别有关?

英语听力优秀

非英语听力优秀

合计

男同学

10

女同学

36

合计

2)将上述调查所得到的频率视为概率,现在从该校高三学生中,采取随机抽样方法每次抽取1名学生,共抽取3次,记被抽取的3名学生中英语听力优秀的人数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望EX

参考公式:,其中

参考临界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)联表见详解,没有90%的把握认为“英语听力优秀”与性别有关(2)分布列详见解析,期望0.9.

【解析】

1)根据题目所给的数据填写列联表即可;再计算的观测值,对照题目中的表格,得出统计结论;(2将频率视为概率,得到学生中抽到一名“英语听力优秀”的概率,根据二项分布即可求解.

1)由频率分布直方图可知,在80人中, “英语听力优秀”有24人,从而2x 2列联表如下:

英语听力优秀

非英语听力优秀

合计

男同学

10

34

44

女同学

14

22

36

合计

24

56

80

列联表中的数据代入公式计算,得:

因为2.463 < 2.706,所以没有90%的把握认为“英语听力优秀”与性别有关.

2)由频率分布直方图知抽到“英语听力优秀”的频率为0.3,将频率视为概率,即从学

生中抽取一名“英语听力优秀”的概率为0.3,由题意,

从而X的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若关于的不等式的解集为,求函数的最小值;

2)是否存在实数,使得对任意,存在,不等式成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表周数

周数x

6

5

4

3

2

1.

正常值y

55

63

72

80

90

99

其中

1)作出散点图;

2)根据上表数据用最小二乘法求出y关于x的线性回方程(精确到0.01

3)根据经验观测值为正常值的0.851.06为正常,若1.061.12为轻度焦虑,1.121.20为中度焦虑,1.20及以上为重度焦虑。若为中度焦虑及以上,则要进行心理疏导。若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知直线l1的参数方程为t为参数),直线l2的参数方程为t为参数),其中α∈(0),以原点O为点x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ2sinθ0

1)写出直线l1的极坐标方程和曲线C的直角坐标方程;

2)设直线l1l2分别与曲线C交于点AB(非坐标原点)求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1852年,英国来华传教士伟烈亚力将《孙子算经》中物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为中国剩余定理”.“中国剩余定理讲的是一个关于整除的问题,例如求120002000个整数中,能被3除余1且被7除余1的数的个数,现由程序框图,其中MOD函数是一个求余函数,记表示m除以n的余数,例如,则输出i为( .

A.98B.97C.96D.95

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直四棱柱的底面ABCD是菱形,E上任意一点.

1)求证:平面平面

2)设,当E的中点时,求点E到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为α为参数).以坐标原点O为极点,x轴正半轴为极轴的坐标系中,曲线C2的方程为m为常数)

1)求曲线C1C2的直角坐标方程;

2)若曲线C1C2有两个交点PQ,当|PQ|时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着银行业的不断发展,市场竞争越来越激烈,顾客对银行服务质量的要求越来越高,银行为了提高柜员,员工的服务意识,加强评价管理,工作中让顾客对服务作出评价,评价分为满意、基本满意、不满意三种,某银行为了比较顾客对男女柜员员工满意度评价的差异,在下属的四个分行中随机抽出40人(男女各半)进行分析比较对40人一月中的顾客评价不满意的次数进行了统计,按男、女分为两组,再将每组柜员员工的月不满意次数分为5组:[05),[510),[1015),[1520),[2025],得到如下频数分布表.

分组

[05

[510

[1015

[1520

[2025]

女柜员

2

3

8

5

2

男柜员

1

3

9

4

3

1)在答题卡所给的坐标系中分别画出男、女柜员员工的频率分布直方图;并求出男、女柜员的月平均不满意次数的估计值,试根据估计值比较男、女柜员的满意度谁高?

2)在抽取的40名柜员员工中,从不满意次数不少于20的柜员员工中随机抽取3人,求抽取的3人中,男柜员不少于女柜员的概率.

查看答案和解析>>

同步练习册答案