精英家教网 > 高中数学 > 题目详情
14.函数y=2x2-x-1的值域是[-$\frac{9}{8}$,+∞).

分析 利用配方法化简可得y=2x2-x-1=2(x-$\frac{1}{4}$)2-$\frac{9}{8}$,从而求函数的值域.

解答 解:y=2x2-x-1=2(x-$\frac{1}{4}$)2-$\frac{9}{8}$≥-$\frac{9}{8}$,
故函数y=2x2-x-1的值域是[-$\frac{9}{8}$,+∞);
故答案为:[-$\frac{9}{8}$,+∞).

点评 本题考查了函数的值域的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.解方程组:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=26}\\{xy=5}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.实数x,y满足x-3$\sqrt{x+1}$=3$\sqrt{y+2}$-y,则x+y的最小值为$\frac{9+3\sqrt{21}}{2}$,最大值为9+3$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1\\;x≤0}\\{-2x\\;x>0}\end{array}\right.$,若f(x)=10,则x=-3;函数f(x)的值域为(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于m的不同的取值范围,讨论方程x2-4|x|+5=m的实数根个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,某计时沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8,用一个平行于圆锥沙漏的轴的平面α截圆锥,得到的截口曲线为双曲线的一部分,且圆锥顶点P到平面α的距离为2,则此双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.y=f(x)定义域为R,且对任意x∈R都有f(x+1)=$\frac{f(x)+1}{1-f(x)}$,若f(2)=1-$\sqrt{2}$,则f(2009)=$-\sqrt{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题(1)空集是任意集合的真子集;(2)若二次方程ax2+bx+c=0有两个不等实根,则△=b2-4ac≥0;(3)“x≠1且x≠2”是“x2-3x+2≠0”的充要条件;(4)若a1,b1,c1,a2,b2,c2都不为零,则“$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{b}_{2}}{{b}_{1}}$=$\frac{{c}_{2}}{{c}_{1}}$”是“关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0同解的充要条件”.其中真命题的序号为(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各组数的等比中项.
(1)-45和-80;
(2)7+3$\sqrt{5}$和7-3$\sqrt{5}$;
(3)(a+b)2和(a-b)2

查看答案和解析>>

同步练习册答案