精英家教网 > 高中数学 > 题目详情

【题目】数学家欧拉在年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点的坐标是(

参考公式:若的顶点的坐标分别是,则该的重心的坐标为.

A.B.

C.D.

【答案】A

【解析】

设点的坐标为,由重心的坐标公式求得该三角形的重心坐标,代入欧拉线方程得一方程,求出线段的垂直平分线方程,和欧拉线方程联立求出三角形的外心,由外心到两个顶点的距离相等得出另一方程,两方程联立可求出点的坐标.

设点的坐标为,由重心的坐标公式可知的重心为

代入欧拉线方程得,整理得,①

线段的中点坐标为,直线的斜率为

线段的垂直平分线方程为,即

联立,解得,所以,的外心为

,整理得,②

联立①②得

时,点重合,舍去,因此,顶点的坐标是.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%93%,占全球的11%35%,因此其素有钒钛之都的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值yy值越大产品的性能越好)与这种新合金材料的含量x(单位:克)的关系为:当0≤x7时,yx的二次函数;当x≥7时,.测得部分数据如表:

(1)求y关于x的函数关系式yfx);

(2)求该新合金材料的含量x为何值时产品的性能达到最佳.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取100名学生,将他们某次考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),

(1)求分数在[70,80)中的人数;

(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,该5 人中成绩在[40,50)的有几人

(3)在(2)中抽取的5人中,随机选取2 人,求分数在[40,50)和[50,60)各1 人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数ab满足ab>0ab,由ab按一定顺序构成的数列(  )

A. 可能是等差数列,也可能是等比数列

B. 可能是等差数列,但不可能是等比数列

C. 不可能是等差数列,但可能是等比数列

D. 不可能是等差数列,也不可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,上一点,,且,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,且焦点为F,直线l与抛物线相交于AB两点.

⑴求抛物线C的方程,并求其准线方程;

为坐标原点.,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥

证明平面平面

当四棱锥的体积为且二面角为钝角时求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若直线与曲线的交点的横坐标为,且,求整数所有可能的值.

查看答案和解析>>

同步练习册答案