【题目】在平面直角坐标系中,是椭圆:上的点,过点的直线的方程为.
(1)求椭圆的离心率;
(2)当时,
(i)设直线与轴、轴分别相交于,两点,求的最小值;
(ii)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点,,三点共线.
【答案】(1)(2)(i)(ii)证明见解析
【解析】
(1)由椭圆方程求出可得离心率;
(2)(i)求出直线与坐标轴交点的坐标,可得出面积为,由在椭圆上,可得,由基本不等式可得的最大值,从而得面积最小值;
(ii)求出对称点的坐标,验证三点共线.可分类和分别求解.
(1)依题,,
所以椭圆离心率为.
(2)依题意,令,由,得,则.
令,由,得,则.
则的面积.
因为点在上,所以.
因为,即,则.
所以.
当且仅当,即,,面积的最小值为.
(3)由,解得.
①当时,,,此时,.
因为,所以三点,,共线.
当时,也满足.
②当时,设,,的中点为,则,代入直线的方程,得:
.
设直线的斜率为,则,
所以.
由,解得,.
所以.
当点的横坐标与点的横坐标相等时,把,代入中得,则,,三点共线.
当点的横坐标与点的横坐标不相等时,
直线的斜率为.由,.
所以直线的斜率为
.
因为,所以,,三点共线,
综上所述,,三点共线.
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是数列的前项和,对任意,都有;
(1)若,求证:数列是等差数列,并求此时数列的通项公式;
(2)若,求证:数列是等比数列,并求此时数列的通项公式;
(3)设,若,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“互联网+”是“智慧城市”的重要内容,A市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi为了解免费WiFi在A市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有90%的把握认为A市使用免费WiFi的情况与年龄有关;
(2)将频率视为概率,现从该市45岁以上的市民中用随机抽样的方法每次抽取1人,共抽取3次.记被抽取的3人中“偶尔或不用免费WiFi”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,数学期望E(X)和方差D(X).附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,∥,,平面平面,且.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)已知点在棱上,且异面直线与所成角的余弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是直角梯形,,,侧面底面,是等边三角形,,点分别是棱的中点 .
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上存在一点,使平面,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
(1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?
(2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为,求随机变量的分布列和数学期望;
(3)试判断男学生完成套卷数的方差与女学生完成套卷数的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知定点、,动点满足,设点的曲线为,直线与交于两点.
(1)写出曲线的方程,并指出曲线的轨迹;
(2)当,求实数的取值范围;
(3)证明:存在直线,满足,并求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com