精英家教网 > 高中数学 > 题目详情
17.在函数 ①y=cos|2x|,②y=|cosx|,③$y=|sin(2x+\frac{π}{2})|$,④y=tan|x|中,最小正周期为π的所有偶 函数为(  )
A.①②B.①②③C.②④D.①③

分析 利用诱导公式、余弦函数的图象和性质,得出结论.

解答 解:函数 ①y=cos|2x|=cos2x为偶函数,且周期为$\frac{2π}{2}$=π,故①满足条件;
②y=|cosx|的最小正周期为π,且是偶函数,故满足条件;
③$y=|sin(2x+\frac{π}{2})|$=|cos2x|的周期为$\frac{1}{2}$•$\frac{2π}{2}$=$\frac{π}{2}$,且是偶函数,故不满足条件;
④y=tan|x|没有周期性,故不满足条件,
故选:A.

点评 本题主要考查诱导公式、余弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象关于直线$x=\frac{2π}{3}$对称,它的周期为π,则下列说法正确是③.(填写序号)
①f(x)的图象过点$({0,\frac{3}{2}})$;
②f(x)在$[{\frac{π}{12},\frac{2π}{3}}]$上单调递减;
③f(x)的一个对称中心是$({\frac{5π}{12},0})$;
④将f(x)的图象向右平移|φ|个单位长度得到函数y=2sinωx的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等比数列{an}中,a4a8=9,则a3+a9的取值范围是(  )
A.[6,+∞)B.(-∞,-6]∪[6,+∞)C.(6,+∞)D.(-6,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某种树苗成活的概率都为$\frac{9}{10}$,现种植了1000棵该树苗,且每棵树苗成活与否相互无影响,记未成活的棵数记为X,则X的方差为90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-alnx.
(1)当a=3,求f(x)的单调递增区间;
(2)若函数g(x)=f(x)-9x在区间$[\frac{1}{2},2]$上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一个周期上的图象如图所示,
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间;
(3)若$f(\frac{α}{2}+\frac{7π}{12})=\frac{{3\sqrt{3}}}{5},α∈[-\frac{5π}{2},-2π]$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某个命题和正整数n有关,如果当n=k,k为正整数时命题成立,那么可推得当n=k+1时,命题也成立.现已知当n=7时命题不成立,那么可以推得(  )
A.当n=6时该命题不成立B.当n=6时该命题成立
C.当n=8时该命题不成立D.当n=8时该命题成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinx-ax.
(Ⅰ)对于x∈(0,1),f'(x)>0恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,令h(x)=f(x)-sinx+lnx+1,求h(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x)满足f(x+4)=f(x),且当0≤x≤2时,f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有两个根,则m的取值范围是(  )
A.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.[-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2)D.[-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2]

查看答案和解析>>

同步练习册答案