精英家教网 > 高中数学 > 题目详情
3.若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=4030.

分析 利用f(x+y)=f(x)f(y),可得$\frac{f(n+1)}{f(n)}$=f(1)=2,即可求出$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$.

解答 解:∵f(x+y)=f(x)f(y),
∴$\frac{f(n+1)}{f(n)}$=f(1)=2,
∴$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=2×2015=4030.
故答案为:4030.

点评 本题考查抽象函数,考查学生分析解决问题的能力,确定$\frac{f(n+1)}{f(n)}$=f(1)=2是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设α,β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:
①若n⊥β,m∥n,n?α,则m∥α;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∥β,m?α,n?β,则m∥n;
④若α⊥β,α∩β=m,n?α,n⊥m;
其中正确命题的序号为④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在两坐标轴上截距相等且与圆:${x^2}+{({y-\sqrt{2}})^2}=1$相切的直线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各组函数表示同一个函数的是(  )
A.$f(x)=\frac{{{x^2}-1}}{x-1}$,g(x)=x+1B.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$
C.$f(x)={({\sqrt{x-1}})^2}$,g(x)=|x-1|D.f(x)=2x-1,g(t)=2t-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|-1<x<2},B={x|0<x<3},则A∩B等于(  )
A.(-1,3)B.(0,2)C.(-1,0)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=logax(a>0,a≠1),且f(3)-f(2)=1.
(1)若f(3m-2)<f(2m+5),求实数m的取值范围.
(2)求使f(x-$\frac{2}{x}$)=$lo{g}_{\frac{3}{2}}\frac{7}{2}$成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{2}^{x}-m}{{2}^{x}-1}$为奇函数,m∈R.
(1)求m的值;
(2)判断函数f(x)的单调性,并用单调性定义证明;
(3)求函数f(x)在[-2,0)∪(0,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆中心在原点,焦点在x轴上且过两点$P(3,2\sqrt{7})$,Q(-6,$\sqrt{7}$)求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\left\{{\begin{array}{l}{x-1(x≥0)}\\{2{x^2}-1(x<0)}\end{array}}$,则f[f(0)]=1.

查看答案和解析>>

同步练习册答案