【题目】设数列{an}的前n项和为Sn . 已知a1=1, =an+1﹣ n2﹣n﹣ ,n∈N* .
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an﹣an﹣1=bna ,求数列{bn}的n前项和Tn;
(3)是否存在实数λ,使得不等式λa ﹣ +a + ≥0恒成立,若存在,求出λ的取值范围;若不存在,请说明理由.
【答案】
(1)解:∵ ,n∈N*.
∴ ①
∴当n≥2时, ②
由①﹣②,得
2Sn﹣2Sn﹣1=nan+1﹣(n﹣1)an﹣n(n+1).
∵2an=2Sn﹣2Sn﹣1
∴2an=nan+1﹣(n﹣1)an﹣n(n+1),
∴ ,
∴数列 是以首项为 ,公差为1的等差数列.
∴ ,
∴ ,当n=1时,上式显然成立.
∴
(2)an﹣an﹣1=bna bn= = = .
∴Tn= + + +…+ .①
Tn= + + +…+ .②
由①﹣②,得
Tn= +2( + + +…+ )﹣ .
= +2 ﹣ .
∴Tn= ﹣ ,n∈N+
(3)λa ﹣ +a + ≥0λ(2n﹣ )+2n+ ≥0,(n=2,4,6,8,10…)λ(2n﹣ )+(2n﹣ )2+2≥0,
令t=2n﹣ ,则t≥ ,
原不等式λt+t2+2≤0≥﹣(t+ ).
∵t+ 在( ,+∞)上单调递增,
∴t+ ≥ +
∴λ≥﹣
【解析】(1)需要分类讨论:n=1和n≥2两种情况下的通项公式.当n≥2时,根据已知条件可以推知2Sn﹣2Sn﹣1=nan+1﹣(n﹣1)an﹣n(n+1).2an=nan+1﹣(n﹣1)an﹣n(n+1),由着两个式子可以得到数列 是以首项为 ,公差为1的等差数列.由此写出通项公式即可;(2)由an﹣an﹣1=bna 可得bn= = = .再利用“错位相减法”与等比数列的求和公式即可得出;(3)将已知不等式变形为λ(2n﹣ )+(2n﹣ )2+2≥0,然后结合函数的单调性来求λ的取值范围.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:
井号I | 1 | 2 | 3 | 4 | 5 | 6 |
坐标 | ||||||
钻探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)在散点图中号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为,求,并估计的预报值;
(2)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(1)中的值之差(即: )不超过10%,则使用位置最接近的已有旧井,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果: )
(3)设出油量与钻探深度的比值不低于20的勘探井称为优质井,在原有井号的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B﹣C)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线交轴于,且, 为坐标原点.
(1)求椭圆的方程;
(2)设是椭圆的上顶点,过点分别作直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 , 满足| |= ,| |=1,且对任意实数x,不等式| +x |≥| + |恒成立,设 与 的夹角为θ,则tan2θ=( )
A.﹣
B.
C.﹣
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com