精英家教网 > 高中数学 > 题目详情

【题目】为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心后转向方向,已知∠MON=,现准备修建一条城市高架道路L,L在MO上设一出入口A,在ON上设一出口B,假设高架道路L在AB部分为直线段,且要求市中心与AB的距离为10km.

(1)求两站点A,B之间的距离;

(2)公路MO段上距离市中心30km处有一古建筑群C,为保护古建筑群,设立一个以C为圆心,5km为半径的圆形保护区.因考虑未来道路AB的扩建,则如何在古建筑群和市中心之间设计出入口A,才能使高架道路及其延伸段不经过保护区?

【答案】(1);(2)

【解析】

(1)过O作直线OE⊥AB于E,则OE=10,设∠EOA=,可求∠EOB=,(),可得AE=10tan,BE=10tan(),可求AB=,又,结合,可得cos,可求两出入口之间距离的最小值为20().

(2)设切点为F,以为坐标原点,以所在的直线为轴,建立平面直角坐标系,设直线AB的方程为y=kx+t(k>0),可求t=20k,或t=60k,可求A(﹣20,0),此时OA=20,又由(1)可知当时,OA=10,综上即可得解.

(1)过作直线OE⊥AB于E,则OE=10,设∠EOA=α,则∠EOB=﹣α,(),

故AE=10tan,BE=10tan(),

AB=10tan+10tan()=10()=

又cos=cos(﹣cos+sin)=

,可得:2

故cos,当且仅当2,即时取等号,

此时,AB有最小值为20(),即两出入口之间距离的最小值为20().

(2)由题意可知直线AB是以为圆心,10为半径的圆的切线,根据题意,直线AB与圆C要相离,其临界位置为直线AB与圆C相切,

设切点为F,此时直线AB为圆与圆的公切线,因为,出入口A在古建筑群和市中心之间,

如图所示,以为坐标原点,以所在的直线为轴,建立平面直角坐标系

由CF=5,OE=10,因为圆的方程为x2+y2=100,圆的方程为(x+30)2+y2=25,

设直线AB的方程为y=kx+t(k>0),

则:,所以两式相除可得:=2,所以t=20k,或t=60k,

所以,此时A(﹣20,0)或A(﹣60,0)(舍去),此时OA=20,

又由(1)可知当时,OA=10,综上,OA

即设计出入口A离市中心的距离在10km到20km之间时,才能使高架道路及其延伸段不经过保护区.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)

今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:

性别与对景区的服务是否满意  单位:名




总计

满意

50

30

80

不满意

10

20

30

总计

60

50

110

1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?

2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;

3)根据以上列联表,问有多大把握认为游客性别与对景区的服务满意有关

注:

临界值表:

P()

0.05

0.025

0.010

0.005


3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)时,,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C经过M(13)N(42)P(1,﹣7)三点,且直线lxay10(aR)是圆C的一条对称轴,过点A(6a) 作圆C的一条切线,切点为B,则线段AB的长度为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点作直线交抛物线于两点,已知点为坐标原点.的最小值为3.

(1)求抛物线的方程;

(2)过点作直线,交抛物线于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点和点,直线的斜率乘积为常数,设点的轨迹为,下列说法正确的是(

A.存在非零常数,使上所有点到两点距离之和为定值

B.存在非零常数,使上所有点到两点距离之和为定值

C.不存在非零常数,使上所有点到两点距离之差的绝对值为定值

D.不存在非零常数,使上所有点到两点距离之差的绝对值为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e为自然对数的底数).

(1)讨论函数f(x)的单调性及最值;

(2)若a>0,且对x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全国第五个扶贫日到来之前,某省开展精准扶贫,携手同行的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,绘制成如图所示的频率分布直方图.

1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);

2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在的概率.

查看答案和解析>>

同步练习册答案