精英家教网 > 高中数学 > 题目详情

【题目】为了保护环境,2015年合肥市胜利工厂在市政府的大力支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为:且每处理一吨二氧化碳可得价值为20万元的某种化工产品.

(1)当时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?

(2)当处理量为多少吨时,每吨的平均处理成本最少?

【答案】(1)该工厂不会获利,;(2

【解析】

试题分析:(1)当时,设该工厂获利为,当时,,因此,该工厂不会获利,所以国家至少需要补贴万元,才能使工厂不亏损;(2)由题意可知,二氧化碳的每吨平均处理成本为:再利用导数求出其最值即可.

试题解析:

(1)当时,设该工厂获利为万元,则

所以当时,,因此,该工厂不会获利,所以国家至少需要补贴700万元,才能使工厂不亏损.

(2)由题意可知,二氧化碳的每吨平均处理成本为

时,,所以

所以时,为减函数;

时,为增函数,

所以当时,取得最小值,即

,,

当且仅当,即时,取得最小值

当处理量为40吨时,每吨的平均处理成本最少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知

(1)

(2),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,左、右顶点分别为,是椭圆上一点, 记直线的斜率为,且有.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点, 为直径的圆经过原点, 且线段的垂直平分线在轴上的截距为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,面为矩形,的中点,交于点.

证明:

,求四面体AA1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

的极值点,求实数的值;

上为增函数,求实数的取值范围;

III时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2009年推出一种新型家用轿车,购买时费用万元,每年应交保险费、养路费及汽油费共万元,汽车的维修费为:第一年无维修费用,第二年为万元,从第三年起,每年的维修费均比上一年增加万元.(1)设该辆轿车使用的总费用(包括购买费用、保险、养路费、汽油及维修费)表达式;(2)这种汽车使用多少年报废最合算即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是.

(1)求油罐被引爆的概率

(2)如果引爆或子弹打光则停止射击,设射击次数为,的分布列及.( 结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,右顶点为,上顶点为,已知

(1)求椭圆的离心率;

(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了了解高一新生男生得到体能状况,从高一新生中抽取若干名男生进行铅球测试,把所得数据(精确到0.1米)进行整理后,分成6组画出频率分布直方图的一部分(如下图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.

1请将频率分布直方图补充完整;

(2)该校参加这次铅球测试的男生有多少人?

(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球测试的成绩的合格率.

查看答案和解析>>

同步练习册答案