精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,为棱上一点(不包括端点),且满足.

1)求证:平面平面

2的中点,求二面角的余弦值的大小.

【答案】1)证明见解析;(2.

【解析】

1)根据传递性,由平面,得到平面平面

(2)作于点,过点,建立空间直角坐标系,求出各平面法向量后根据夹角公式求得二面角余弦值

1)证明:因为,所以

,所以平面

平面,所以平面平面.

2

如图,作于点,过点

两两垂直,故以为坐标原点,

直线分别为轴、轴、轴建立如图所示空间直角坐标系.

,则,所以

,所以

所以.

因为的中点,所以.

为平面的法向量,

则有

不妨设,则.

易知平面的一个法向量为

.

因为二角为钝角,

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面的边长是的正方形,上的点,且平面.

(1)求证:

(2)求证:平面平面

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学解答一道解析几何题:已知直线lx轴的交点为A,圆O经过点A

(Ⅰ)求r的值;

(Ⅱ)若点B为圆O上一点,且直线AB垂直于直线l,求

该同学解答过程如下:

解答:(Ⅰ)令,即,解得,所以点A的坐标为

因为圆O经过点A,所以

(Ⅱ)因为.所以直线AB的斜率为

所以直线AB的方程为,即

代入消去y整理得

解得.当时,.所以点B的坐标为

所以

指出上述解答过程中的错误之处,并写出正确的解答过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,过的直线交抛物线于两点.

(1)若直线的斜率为1,,求抛物线的方程;

(2)若抛物线的准线与轴交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.

1)由频率分布直方图计算跑步千米数不小于70千米的人数;

2)已知跑步千米数在的人数是跑步千米数在,跑步千米数在的人数是跑步千米数在,现在从跑步千米数在的跑友中抽取3名代表发言,用表示所选的3人中跑步千米数在的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):

场次

投篮次数

命中次数

主场1

22

12

主场2

15

12

主场3

12

8

主场4

23

8

主场5

24

20

场次

投篮次数

命中次数

客场1

18

8

客场2

13

12

客场3

21

7

客场4

18

15

客场5

25

12

1)从上述比赛中随机选择一场,求小明在该场比赛中投篮命中率超过0.6的概率;

2)从上述比赛中随机选择一个主场和一个客场,求小明的投篮命中率一场超过0.6,一场不超过0.6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数上的单调性;

2)当时,若时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设斜率不为0的直线与抛物线交于两点,与椭圆交于两点,记直线的斜率分别为.

(1)求证:的值与直线的斜率的大小无关;

(2)设抛物线的焦点为,若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假.

1;(2;

3;(4.

查看答案和解析>>

同步练习册答案