精英家教网 > 高中数学 > 题目详情
6.在独立性检验中,统计量Χ2有两个临界值,3.841和6.635,当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2<3.841时,认为两个事件无关,在一项打鼾与患心脏病的调查中,共调出来2000人,经计算Χ2>20.87,根据这一数据分析,认为打鼾与患心脏病之间(  )
A.有95%的把握认为两者有关B.约有95%的打鼾者患心脏病
C.有99%的把握认为两者有关D.约有95%的打鼾者患心脏病

分析 根据独立性检验中,统计量Χ2与所给的临界值进行比较,即可得出结论.

解答 解:独立性检验中,统计量Χ2>20.87>6.635,
所以有99%的把握认为打鼾与患心脏病之间有关.
故选:C.

点评 本题考查了独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.同学聚会上,某同学从《爱你一万年》,《十年》,《父亲》,《单身情歌》四首歌选出两首歌进行表演,则《爱你一万年》未选取的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知斜四棱柱平面ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,
(1)求直线BD1与平面ABCD所成的角的正弦值;
(2)若E为CC1中点,在线段AD上是否存在一点M,使得MB1⊥平面BED1,若存在求出AM长度,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.小品类是春节文艺晚会的重要节目,一调查机构为研究“喜欢收看春节文艺晚会小品类节目与地域文化是否有关”,在南北方不同地域随机抽取了100名市民进行调查,发现被调查对象的北方人有40名喜欢收看,有15名不喜欢收看;调查对象的南方人有20名喜欢收看,有25名不喜欢收看
(1)在被调查对象中,喜欢收看春节文艺晚会小品类节目的人数占各自地域的比例分别是多少?并初步判断喜欢收看春节文艺晚会小品类节目与地域是否有关?
(2)试根据题设数据完成2X2列联表,并判断是否有99.5%的把握认为喜欢收看春节文艺晚会小品类节目与地域文化有关
参考数据公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$
临界值:
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前n项和为Sn,a1=2,a2=7,an=3an-1+2an-2,n∈N*,n≥3.
(1)求证:a2017一定是奇数;
(2)①求证:4Sn+3<$\frac{17}{3}$an(n≥2,n∈N*);
②求证:|an+1-$\frac{{{a}_{n}}^{2}}{{a}_{n-1}}$|≤$\frac{1}{2}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图下面程序框图运行的结果s=1320,那么判断框中应填入(  )
A.k<10?B.k>10?C.k<11?D.k>11?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)的定义域为[-1,1],图象如图1所示:函数g(x)的定义域为[-2,2],图象如图2所示,方程f[g(x)]=0有m个实数根,方程g[f(x)]=0有n个实数根,则m+n=(  )
A.14B.12C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义一种运算a?b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,若f(x)=2x?|x2-4x+3|,当g(x)=f(x)-m有5个零点时,则实数m的取值范围是(  )
A.(0,1)B.[0,1]C.(1,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合A={x|x2<9,x∈Z},B={x|2x>a}.
(1)若a=1,写出A∩B的所有真子集;
(2)若A∩B有4个子集,求a的取值范围.

查看答案和解析>>

同步练习册答案