精英家教网 > 高中数学 > 题目详情
8.在△ABC中,A=30°,B=60°,C=90°,那么三边之比a:b:c等于(  )
A.1:2:3B.3:2:1C.1:$\sqrt{3}$:2D.2:$\sqrt{3}$:1

分析 求出三角的正弦值,利用正弦定理求出三边的比.

解答 解:∴A=30°,B=60°  C=90°,
∴sinA=$\frac{1}{2}$,sinB=$\frac{\sqrt{3}}{2}$,sinC=1,
由正弦定理得:a:b:c=sinA:sinB:sinC=1:$\sqrt{3}$:2.
故选:C.

点评 本题主要考查了正弦定理在解三角形中的应用,考查了特殊角的三角函数值的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1所示的一条折线表示,西红柿的种植成本与上市时间的关系用图2所示的抛物线表示.(注:市场售价和种植成本的单位:元/kg,时间单位:天)

(1)写出图1表示的市场售价与时间的函数关系式P=f(t);写出图2表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴为4$\sqrt{3}$,焦距为4$\sqrt{2}$.
(1)求椭圆G的方程;
(2)若斜率为1的直线l与椭圆G交于A、B两点,且点P(-3,2)在线段AB的垂直平分线上,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直三棱柱ABC-A1B1C1中,CC1=AC=2,AB=BC,D是BC1上的点.且CD⊥平面ABC1
(1)求证:AB⊥平面BCC1
(2)求四棱锥C1-ABB1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知△ABC的顶点A(-4,0)和C(4,0),顶点B在双曲线$\frac{x^2}{9}-\frac{y^2}{7}=1$上,则$\frac{sinA-sinC}{sinB}$=$±\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列函数存在极值的是②(填序号)
①y=$\frac{1}{x}$;②y=x-ex;③y=x3+x2+2x-3;④y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线${x^2}-\frac{y^2}{3}=1$的右焦点作直线l交双曲线于A,B两点,则满足|AB|=6的直线l有(  )条.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法不正确的是(  )
A.既有大小又有方向的量叫做向量
B.不存在长度为零的向量
C.如果两个向量相等,则两个向量的长度一定相同
D.零向量可以和任何向量平行

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知P,A,B,C四点共面且对于空间任一点O都有$\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\frac{4}{3}$$\overrightarrow{OB}$+λ$\overrightarrow{OC}$,则λ=-$\frac{7}{3}$.

查看答案和解析>>

同步练习册答案