精英家教网 > 高中数学 > 题目详情
已知抛物线的焦点为F,过抛物线在第一象限部分上一点P的切线为,过P点作平行于轴的直线,过焦点F作平行于的直线交于M,若,则点P的坐标为         

试题分析:设,抛物线在第一象限的函数式为,切线斜率,切线方程为与x轴交点A,结合图形可知由,P点
点评:导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,本题依次求出切线方程,进而确定相关点坐标
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆)的离心率为,过右焦点且斜率为1的直线交椭圆两点,为弦的中点。
(1)求直线为坐标原点)的斜率
(2)设椭圆上任意一点,且,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在平面直角坐标系中,椭圆的焦距为2,且过点.
求椭圆的方程;
若点分别是椭圆的左、右顶点,直线经过点且垂直于轴,点是椭圆上异于的任意一点,直线于点

(ⅰ)设直线的斜率为直线的斜率为,求证:为定值;
(ⅱ)设过点垂直于的直线为.求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知椭圆的左焦点的坐标为是它的右焦点,点是椭圆上一点, 的周长等于
(1)求椭圆的方程;
(2)过定点作直线与椭圆交于不同的两点,且(其中为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知抛物线和点,若抛物线上存在不同两点满足
(I)求实数的取值范围;
(II)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P在曲线C1上,点Q在曲线C2:(x-2)2y2=1上,点O为坐标原点,则的最大值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)
直线称为椭圆的“特征直线”,若椭圆的离心率.(1)求椭圆的“特征直线”方程;
(2)过椭圆C上一点作圆的切线,切点为PQ,直线PQ与椭圆的“特征直线”相交于点EFO为坐标原点,若取值范围恰为,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。

查看答案和解析>>

同步练习册答案