精英家教网 > 高中数学 > 题目详情

【题目】已知函数,设函数,若函数上恰有两个不同的零点,则的值为________.

【答案】

【解析】

求得x0x0x0yf(﹣x)﹣fx)的解析式,并作出图象,由题意可得f(﹣x)﹣fx)= 有两个不等实根,通过图象观察即可得到所求的值.

函数

x0时,f0)=1f(﹣x)﹣fx)=0

x0时,﹣x0f(﹣x)﹣fx)=﹣x+1﹣(x12xx2

x0时,﹣x0f(﹣x)﹣fx)=(﹣x12﹣(x+1)=x2+x

作出函数yf(﹣x)﹣fx)的图象,

由函数gx)在R上恰有两个不同的零点,可得f(﹣x)﹣fx)=有两个不等实根.

由图象可得=±

即有=±时,两图象有两个交点,

故答案为:±

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数),过点且倾斜角为的直线交曲线两点.

(Ⅰ)求曲线的直角坐标方程和直线的参数方程;

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是全称量词命题还是存在量词命题.

1)梯形的对角线相等;

2)存在一个四边形有外接圆

3)二次函数的图象都与x轴相交;

4)存在一对实数xy,使成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,短轴的两个端点分别为A,B,且满足:,且椭圆经过点

(1)求椭圆的标准方程;

(2)设过点M的动直线(与X轴不重合)与椭圆C相交于P,Q两点,在X轴上是否存在一定点T,无论直线如何转动,点T始终在以PQ为直径的圆上?若有,求点T的坐标,若无,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①;根据2010年至2016年的数据(时间变量的值依次为)建立模型②

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函数f(x)R上单调递增,求实数a的取值范围;

(3)是否存在实数a,使不等式f(x)≥2x3对任意xR恒成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数满足 ,则( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

同步练习册答案