分析 由题意可得P(a,3a),A(a,3a+2),B(3,3),求得向量PA,PB的坐标,向量$\overrightarrow{PA}$与$\overrightarrow{PB}$夹角为钝角,等价为$\overrightarrow{PA}$•$\overrightarrow{PB}$<0,且$\overrightarrow{PA}$与$\overrightarrow{PB}$不共线.运用向量的数量积的坐标表示和向量共线的坐标表示,计算即可得到所求范围.
解答 解:由题意可得P(a,3a),A(a,3a+2),B(3,3),
$\overrightarrow{PA}$=(0,2),$\overrightarrow{PB}$=(3-a,3-3a),
向量$\overrightarrow{PA}$与$\overrightarrow{PB}$夹角为钝角,
等价为$\overrightarrow{PA}$•$\overrightarrow{PB}$<0,且$\overrightarrow{PA}$与$\overrightarrow{PB}$不共线.
由$\overrightarrow{PA}$•$\overrightarrow{PB}$<0,可得2(3-3a)<0,解得a>1,
由$\overrightarrow{PA}$与$\overrightarrow{PB}$共线,可得2(3-a)=0,解得a=3,
综上可得,a的取值范围是{a|a>1且a≠3}.
点评 本题考查向量的夹角为钝角的等价条件,考查向量的数量积的坐标表示,属于基础题和易错题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${C}_{2013}^{3}$ | B. | ${C}_{2014}^{3}$ | C. | ${C}_{2014}^{4}$ | D. | ${C}_{2013}^{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{e}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 1或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3\sqrt{2}-\sqrt{3}}{6}$ | B. | $\frac{3\sqrt{2}+\sqrt{3}}{6}$ | C. | $\frac{-3\sqrt{2}+\sqrt{3}}{6}$ | D. | $\frac{-3\sqrt{2}-\sqrt{3}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{2}{5}$ | D. | -$\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com