分析 (1)由B1B⊥平面ABC,可得B1B⊥AE,利用△ABC是等边三角形,可得AE⊥BC,可得AE⊥平面BCC1B1,即可证明平面AEF⊥平面B1BCC1.
(2)由(1)可知CD⊥平面ABB1A1,CD⊥A1D,再利用等边三角形的性质、勾股定理可得AA1,FC.利用直角三角形的面积计算公式即可得出.
解答 证明:(1)如图,∵正三棱柱ABC-A1B1C1中,△ABC是正三角形,
∴B1B⊥平面ABC,AE?平面ABC,
∴AE⊥BB1,
∵E、F分别是BC、CC1的中点,∴AE⊥BC,
∵BC∩BB1=B,∴AE⊥平面B1BCC1,
∵AE?平面AEF,
∴平面AEF⊥平面B1BCC1.
解:(2)由(1)可知CD⊥平面ABB1A1,A1D?平面ABB1A1,
∴CD⊥A1D,
∵AB=AC=BC=2,D是AB的中点,E是BC的中点,
∴AE=CD=$\sqrt{3}$,AD=CE=1,
∵∠CA1D=45°,∴A1D=CD=$\sqrt{3}$,
∴AA1=$\sqrt{{A}_{1}{D}^{2}-A{D}^{2}}$=$\sqrt{2}$,
∵F是C1C的中点,FC=$\frac{1}{2}$AA1=$\frac{\sqrt{2}}{2}$.
∴三棱锥F-AEC的表面积:
S=$\frac{1}{2}×1×\frac{\sqrt{2}}{2}+\frac{1}{2}×2×\frac{\sqrt{2}}{2}+\frac{1}{2}×1×\sqrt{3}$+$\frac{1}{2}×\sqrt{3}×\sqrt{(\frac{\sqrt{2}}{2})^{2}+1}$
=$\frac{3\sqrt{2}+\sqrt{3}}{2}$.
点评 本题考查了空间位置关系、等边三角形的性质、直角三角形的面积计算公式、勾股定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{4\sqrt{2}-\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com