精英家教网 > 高中数学 > 题目详情

已知f(x)是二次函数,若f(0)=-2,且f(x+1)=f(x)+x-1,试求f(x)的表达式,并求函数f(x)的单调区间.

解:设f(x)解析式为y=ax2+bx+c(a≠0)
∵f(0)=-2,∴c=-2.
又f(x+1)=f(x)+x-1,∴a(x+1)2+b(x+1)+c=ax2+bx+c+x-1即
2ax+a+b=x-1,由解得
∴f(x)=
配方得,f(x)=结合二次函数的图象可知:
f(x)的单调递减区间为(-∞,);f(x)的单调递增区间为(,+∞)
分析:由f(0)=-2,可得c=-2,由f(x+1)=f(x)+x-1建立方程组可解ab的值,再由二次函数的图象可知单调区间.
点评:本题为二次函数的解析式的求解,再根据函数的解析式求其单调区间,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是
(0<m<
2
2
内的任一实数)
(0<m<
2
2
内的任一实数)
.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是________.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009年浙江省温州市摇篮杯高一数学竞赛试卷(解析版) 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是    .(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆外国语学校高一(上)期末数学试卷(解析版) 题型:选择题

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是( )
A.f(-1)
B.f(2)
C.f(5)
D.f(7)

查看答案和解析>>

同步练习册答案